出版時間:2012-2 出版社:科學(xué)出版社 作者:林多梁 著 頁數(shù):272
內(nèi)容概要
本書是在作者長期的科學(xué)研究和多年執(zhí)教中,吸取美國大學(xué)教學(xué)特點,結(jié)合中國高校教學(xué)改革的實際情況編著的。內(nèi)容適合讀者由淺入深的學(xué)習(xí),對量子力學(xué)的抽象理論,通過理論闡述和具體事例對照,更易于理解和掌握。講授基本知識的同時,本書也介紹了科學(xué)研究的前沿知識,使讀者深入了解目前量子力學(xué)理論的發(fā)展?fàn)顩r。本書適合物理專業(yè)本科生及研究生學(xué)習(xí)使用,也可做為科研人員參考使用。
書籍目錄
Preface
Ⅰ.Brief review of historical development
1.Black boay radfatlon
2.Photoelectric effect
3.Specific heat of solids
4.Compton effect
Problems
Ⅱ.Uncertainty and complementarily
1.Einstein relations and Bohr complimentarity principle
2.Wave-particle duality and quantum behavior
3.De Broglie relation and Heisenberg uncertainty relation
4.Further remarks on the uncertainty principle
Problems
Ⅲ.The Schr6dinger wave equation
1.Postulates of quantum mechanics
2.The SchrOdinger equation for free particles
3.Probability distributions
4.Operators and expectation values
5.Motion of a free wave packet
6.Schr6dinger equation for a particle in external fields
7 Schr6dinger equation for a system+of interacting particles
Problems
Ⅳ.Heisenberg equation of motion and commutators
1.Heisenberg equation of motion
2.Commutation relations
ProblerDs
Ⅴ.Symmetry properties and conservation laws
1.Uniformity of time
2.Uniformity of space
3.Isotropy of space
4.Discrete transformation
5.Reduction of the two-body problem
Problems
Ⅵ.Eigenfunctions and eigenvalues
1.Stationary states
2.Spectrum of the Hamiltonlan
3.Diracs &function
4.Orthonormality and completeness
5.Density of states
6.Linear vector space
7.Simultaneous eigenfunctions and compatible observables
8.Probability amplitudes
Problems
Ⅶ.The classical limit and WKB method
1.Ehrenfest theorem
2.Classical limit of Schr6dinger equation
3.The semi-classical approximation for stationary states
4.The quantization rule of Bohr and Sommerfield
Problems
Ⅶ.lllustrative examples in one dimension
1.Square well potential
2.Seatterirg from the square well-resonances and virtual
states
3.Periodic potential-Kr0nig:Penne: model
4.The 3 functiofl potentidl
5.Linear harmonic oscillator
Problems
Ⅸ.Illustrativeexamples in three dimensional space
1.The wave equation in spherical coordinates
2.Symmetry properties of the central field problem
3.Angular momentum eigenstates
4.Free particle motion with a definite
5.Isotropic square well
6.Hydrogen atom ;
7.Degeneracy of hydrogen energy levels
8.Electron in magnetic fields--a cylitidfial field problem
9.Examples in the confined and low-dimensionM space
Problems
Ⅹ.Angular momentum
1.Matrix representation of angular momentum operators
2.Spin eigenvectors
* 3.Coupling of two angular momentum vectors
4; Rotation matrices
5.Arbitrary rotation of a rigid body
Problems
Ⅺ.Unitary transformation
1.States and operators
2.Unitary operators and unitary transformations
3.Observables in different representations
* 4.,Schr6dinger, Heisenberg and interaction pictures
* 5.The interaction picture
6.Pure and,mixed states
Problems
Ⅻ.Approximation methods
1Variation method
2.Pert urbationtheory for nonrdegenerate stationary states
3.Yalidity of the perturbation method
4.Perturbation theory for degenerate states
5.Eine structureof hydrogen atomic spectra
6.Atoms in external magnetic fields
Problem,s
ⅩⅢ.Many-electron systems
1.Indistinguishability and Pauli principle
2.Symmetrization and anti-symmetrization of wave functions
3.Ground state of helium atom
4.Excited states of helium atom
5.Slater determinant for many-electron atoms
6.Hartree-Fock method
7.Statistical model of Fermi-Thomas
Problems
ⅩⅣ.Theory of time-dependent perturbation
1.Time-dependent perturbation
2.Transition probabilit_y pet: unit time
3.Adiabatic and sudden approximation
4.Induced emission, absorption and spontaneous emission
5.Multipole radiation and selection rules
6.Lifetime and width of excited levels
7.Photoelectric effect
8.Magnetic resonance
9.Oscillating strength Problems
ⅩⅤ.Theory of scattering
1.General theory of elastic scattering
2.Green function for a free particle
3.The Born approximation
4.Validity criteria for the Born approxirnition
5.Method of partial waves
6.Eikonal approximation
7.Elastic scattering from the Coulomb potential
8.Generaltheory of inelastic gcattering--The Eipman-Schwingwer
formulation
9.Scattering fromcomplex targefs
Problems
References
Index
編輯推薦
量子力學(xué)(Quantum Mechanics)是研究微觀粒子的運動規(guī)律的物理學(xué)分支學(xué)科,它主要研究原子、分子、凝聚態(tài)物質(zhì),以及原子核和基本粒子的結(jié)構(gòu)、性質(zhì)的基礎(chǔ)理論,它與相對論一起構(gòu)成了現(xiàn)代物理學(xué)的理論基礎(chǔ)。量子力學(xué)不僅是近代物理學(xué)的基礎(chǔ)理論之一,而且在化學(xué)等有關(guān)學(xué)科和許多近代技術(shù)中也得到了廣泛的應(yīng)用。 《Quantum Mechanics》(作者Lin Duoliang、Liang Junjun)是本介紹量子力學(xué)的英文專著。
圖書封面
評論、評分、閱讀與下載