出版時間:2011-10 出版社:科學出版社 作者:(美)拉姆 等著 頁數:430 字數:584000
Tag標簽:無
內容概要
本書由全球各個國家該領域的專家編撰而成,論述了使用納米材料、過程、方法凈化有毒廢液、空氣、地下水和廢水的最新方法。本書討論了使用納米技術中和有害微生物、殺蟲劑、重金屬、化工廢料、化學與生物制劑,以及其他有毒物質。涉及內容廣泛,包含物理、化學、納米材料技術、納米結構,以及納米凈化技術等內容。
作者簡介
作者:(美國)拉姆(Manoj K.Ram) (美國)Silvana Andreescu (美國)Hanming Ding
書籍目錄
撰稿人
前言
第1章 利用納米技術去污
Manoi K.Ram and Ashok Kumar
1.1 引言
1.2 飲用水凈化
1.2.1 使用碳過濾器進行水凈化
1.2.2 碳納米管作為過濾材料
1.2.3 功能化碳納米管用于吸附
1.3 Ti02與有機和無機化合物的光催化作用
1.4 酶凈化
1.5 用于消除化學戰(zhàn)劑的納米材料
1.5.1 基于納米零價鐵的凈化
參考文獻
第2章 內皮層中空纖維納米多孔膜的制備和應用
Guojun Zhan9,Shu!an ji,Zhongzhou Liu,and Maohong Fan
2.1 引言
2.2 內皮層中空纖維多孔膜的制備
2.3 內皮層中空纖維多孔膜在處理印鈔廢水上的應用
2.3.1 工藝流程
2.3.2 全規(guī)模的系統(tǒng)
2.3.3 廠區(qū)運行狀態(tài)
2.3.4 經濟效益分析_
2.4 內皮層中空纖維多孔膜在聚電解質多層膜(PEMMs)自組裝上的應用
2.4.1 內皮層中空纖維聚電解質多層膜的自組裝
2.4.2 內皮層中空纖維聚電解質多層膜的應用
致謝
參考文獻
……
索引
章節(jié)摘錄
版權頁:插圖:CHAPTER 1 DecontaminationUsing NanotechnologyManoj K. Ram and Ashok KumarNanotechnology Education Research Center,University of South Florida, Tampa, Florida1.1 Introduction Nanotechnology can be defined as the synthesis, characterization,and application of materials science and engineering and deviceswhose smallest functional organization in at least one dimension ison the nanometer scale (one billionth of a meter).1,2 The nanotechnologyhas grown to multidisciplinary scientific fields in a decade.Nanotechnology has shown huge potential in areas as diverse asdrug development, water decontamination, information and communicationtechnologies, and the production of stronger, lightermaterials and human health care.3,4 Water and air are two vital componentsof life on Earth; the existence of life on Earth is made possiblelargely because is owed by the presence of clean water and air inhabitual form because of their importance to metabolic processeswithin the body. Clean and fresh water and air are essential for thevery existence of life. Contamination of natural water sources bypathogenic microorganisms, heavy metal and groundwater withorganic pollutants are worldwide public health problems, leading towaterborne outbreaks of infectious hepatitis, viral gastroenteritis, andcancer. Other contaminants of water are microorganisms such asEscherichia coli (E. coli), amebas, Cryptosporidium, cholera, viruses,and bacteria.Immobilization of enzymes has been extensively studied for various large-scale applications due to the potential advantages including product purification, catalyst recycling, and continuous operation.The limiting factor of the application of enzyme immobilization is due to the rather poor biocatalytic efficiency of the immobilized enzymes,Therefore, strategies for improving biocatalytic effi-ciency through host materials' structure manipulation are currently being developed; both chemical and physical immobilization pro-cedures have been used for this purpose. Most physical methods are based on entrapment or encapsulation procedures of the bio-logical reagent in nanoporous materials (e.g., mesoporous silica,nanostructured polymers, and sol-gels). Porous matrices have the capacity to achieve high enzyme loading, but are limited by a high diffusion barrier for the substrate, restricting the accessibility to bioactive sites and affecting the overall effectiveness of the method.On the other hand, covalent attachment is carried out mainly by chemically binding the biocomponents onto the surface of both porous and nonporous materials. Enzymes can undergo covalent modification thrugh attachment of polymers or functional groups on their surface.
編輯推薦
《納米科學進展系列:環(huán)境凈化納米技術》由科學出版社出版。
圖書封面
圖書標簽Tags
無
評論、評分、閱讀與下載