出版時(shí)間:2011-9 出版社:科學(xué)出版社 作者:(美)古普塔 等編著 頁(yè)數(shù):552
內(nèi)容概要
聚合物納米復(fù)合材料綜合了納米材料和基體等多種材料特性的優(yōu)勢(shì)而成為當(dāng)前科學(xué)界的研究“熱點(diǎn)”?!毒酆衔锛{米復(fù)合材料手冊(cè)》對(duì)聚合物納米復(fù)合材料的性能及應(yīng)用進(jìn)行了系統(tǒng)的闡述和總結(jié),為聚合物納米復(fù)合材料的應(yīng)用指明了方向。
《聚合物納米復(fù)合材料手冊(cè)》首先對(duì)聚合物納米復(fù)合材料發(fā)展的挑戰(zhàn)和機(jī)遇進(jìn)行綜述,介紹了不同類型碳纖維的發(fā)展史及其在聚合物納米復(fù)合材料中的應(yīng)用。然后闡述了納米材料及其表面處理,以及加工過(guò)程中如何解決納米添加劑與聚合物熔體之間相容性等一系列問(wèn)題。其次介紹了結(jié)構(gòu)表征技術(shù),尤其介紹了透射電鏡(TEM)的基本原理、樣品制備方法及其操作過(guò)程。最后介紹了層基和碳基納米復(fù)合材料的具體性能。本手冊(cè)是由
Rakesh K.Gupta教授、Elliot B.Kennel教授及Kwang-Jea Kim研究員共同主編的。
作者簡(jiǎn)介
作者:(美國(guó))古普塔 (Rakesh K.Gupta) Elliot Kennel Kwang-Jea KimRakesh K.Gnpta,從1992年起一直在西維吉尼亞大學(xué)從事教學(xué)工作。Gupta教授先后在印度理工學(xué)院坎普爾校區(qū)和美國(guó)特拉華大學(xué)獲得工學(xué)學(xué)士和化學(xué)工程專業(yè)博士學(xué)位。此前,在紐約州立大學(xué)從事教學(xué)工作長(zhǎng)達(dá)11年。此外,他曾短暫在Monsanto和Dupont公司工作及擔(dān)任西維吉尼亞區(qū)的聚合物聯(lián)盟的技術(shù)顧問(wèn)。他的研究領(lǐng)域主要集中在聚合物流變、聚合物加工及聚合物復(fù)合材料等方面。已經(jīng)出版了《聚合物復(fù)合材料流變學(xué)》和《聚合物工程基本原理》兩部專業(yè)書籍。Elliot B.Kennel,Kennel教授先后在邁阿密大學(xué)和俄亥俄州立大學(xué)獲得物理學(xué)專業(yè)理學(xué)學(xué)士和核工業(yè)理學(xué)碩士學(xué)位。此外,他是:Nanographite Materials,Inc.和Pyrograf Products,Inc.公司的創(chuàng)始人之一。20世紀(jì)80年代早期,在美國(guó)空軍研究所工作期間,作為早期發(fā)起人,他提出P-Tpe摻雜碳納米管及其納米復(fù)合材料用作高溫電導(dǎo)體。目前,提倡使用煤炭基原料作為低成本納米復(fù)合材料和其他炭產(chǎn)品,如瀝青、焦炭。Kennel教授還曾擔(dān)任Applied Science,Inc.的副總裁和研究發(fā)展主任、美國(guó)空軍研究所的主管及航天材料和能量轉(zhuǎn)換領(lǐng)域的國(guó)內(nèi)顧問(wèn)。Kwang-Jea Kim,目前是美國(guó)阿克倫大學(xué)的研究員,先后在韓國(guó)仁荷大學(xué)和阿克倫大學(xué)獲得表面活性劑合成專業(yè)理學(xué)碩士和聚合物工程專業(yè)理學(xué)博士學(xué)位,在美國(guó)Struktol公司作為研究科學(xué)家和項(xiàng)目經(jīng)理工作五年以上。然后,他在西維吉尼亞大學(xué)化學(xué)工程系作為講師從事教學(xué)工作一年。其研究領(lǐng)域主要集中在聚合物復(fù)合材料、界面科學(xué)、流變學(xué)、反應(yīng)加工、化學(xué)添加劑、納米材料、有機(jī)-無(wú)機(jī)雜化材料、橡膠及塑料等方面。Kwang-Jea Kim作為共同作者出版《熱塑和橡膠復(fù)合物:技術(shù)與物理化學(xué)》。目前,作為《纖維素聚合物復(fù)合材料界面》的特邀編輯編寫了復(fù)合材料界面的部分,該書主要涉及木材-塑料復(fù)合材料領(lǐng)域。
書籍目錄
關(guān)于編者
編者
1.挑戰(zhàn)與機(jī)遇的綜述
2.碳納米材料發(fā)展史
3.聚合物基體摻雜納米材料
4.表面改性納米粒子作為橡膠復(fù)合物的分散和增強(qiáng)添加劑
5.碳納米纖維的表面改性
6.層狀硅酸鹽納米復(fù)合材料
7.橡膠加工過(guò)程中團(tuán)聚納米粒子的分散
8.聚合物基納米復(fù)合材料的流變學(xué)
9.碳基納米復(fù)合材料的概述
10.磁或電場(chǎng)下聚合物復(fù)合材料中氣相增長(zhǎng)碳纖維有序排列
11.聚酯基液晶聚合物的納米復(fù)合材料
12.聚合物納米復(fù)合材料結(jié)構(gòu)和形貌的透射電鏡及相關(guān)技術(shù)
13.聚合物基粘土納米復(fù)合材料的力學(xué)性能
14.聚合物納米復(fù)合材料的質(zhì)量傳輸
15.聚合物納米復(fù)合材料的阻燃性能
16.聚合物基納米粒子的電學(xué)性能
17.聚合物納米復(fù)合材料的熱導(dǎo)性能
18.功能化植物油的生物基納米復(fù)合材料
索引
章節(jié)摘錄
版權(quán)頁(yè):插圖:1.1 Introduction to the BookNanomaterials,and,in particular,nanoreinforcements for polymer composites have inrecent years been the subject of intense research,development,and commercialization.Aremarkable 1959 talk by Nobel Laureate Richard Feynman at the meeting of the AmericanPhysical Society at Caltech is recognized by many scientific historians as a salient event inthe history of nanotechnology.1 In his talk,F(xiàn)eynman foresaw the development of nanomaterials,nanolithography,nanoscale digital storage,molecular electronics,and nanomanufacturingmethods.Among other things,F(xiàn)eynman famously offered two prizes,for athousand dollars apiece,in which he asked for a working motor smaller than 1/64 of a cubicinch;or to anyone wh could reduce text to the size such that only an electron microscopecould read it(i.e.,nanolithography).Both prizes were awarded within a few years.Nanomaterials are an important subset of nanotechnology.Feynman was interested notonly in the small dimensions that might be created,but also in the special attributes ofmaterials whose size might be controlled to only a few atomic layers in thickness.Theseattributes,taken together,help to more precisely define the concept of nanomaterials.Thatis,nanomaterials of interest should not only have very small physical dimensions,butshould also exhibit some unusual properties by virtue of their small size;and moreover,the producers of these materials should have control over the dimensions of the materialsand hence the resultant property enhancements.On this basis,it might be argued that a tire made of rubber compounded with carbonblack was one of the earliest primitive nanocomposites.As early as the 1860s,the ability ofcarbon black to enhance the mechanical properties of vulcanized rubber was recognizedby researchers who experimented with adding different materials to the basic rubber formulation.By virtue of its high surface area,surface energy,and mechanical properties,carbon black is able to significantly enhance the properties of rubber.Other well-knownnanoscale reinforcements available in the early twentieth century included fumed silicaand precipitated calcium carbonate.Interest in nano-particle-based polymer composites has expanded significantly since the late 1980s when the patent of Okada et al.1 (assigned to Kabushiki Kaisha Toyota Chou Kenkyusho) for in situ polymerization of a Nylon 6/clay nanocomposite with, as stated in claim 1,“high mechanical strength and excellent high-temperature characteristics” was issued.1 The results presented in the patent show that polymer nancomposites based on layered silicates provide a significant potential for development of a wide range of enhanced performance polymer compounds. As demonstrated by several researchers,a relatively small loading of properly dispersed (well-exfoliated)organoclay provides a substantial improvement in a polymer's properties.2-6 These include improved thermal properties such as heat distortion temperature(HDT),mechanical properties such as flexural strength and modulus (without significant loss of impact), barrier properties, flame resistance, and abrasion resistance. However, until the early to mid-2000s, there were few commercial materials. Those in the market were mostly based on Nylon 6,and were for niche market applications. The reason for this,at least in part,is that many of the initial composites,such as the Toyota material previously noted, were developed using direct polymerization of a monomer clay mixture. While this method is suitable for certain polymers such as Polyamide 6,the complexity and expense of building a production facility limits entry of many smaller firms into the market. Also,until recently, most development has focused on determining proper surface treatment to make the clay(typically montmorillonite)compatible with the base polymer and therefore improve the ease with which it can be dispersed.Using properly treated clay (i.e.more compatible with the matrix polymer) significantly reduces the degree of difficulty in compounding nanocomposites. For example, a Polyamide 6 and compatible organoclay can be compounded using a mixing-type singlescrew extruder. The result is a nanocomposite where the clay(as determined by XRD and TEM) is partially exfoliated.7 However,comparison of physical properties between the nanocomposite compounded on the single-screw extruder and one compounded on a twin-screw extruder configured with a very mild mixing zone shows significant differences. The modulus of the single-screw extruder compounded material compared favorably with that of material compounded on the twin-screw extruder. However,while the yield strength of the single-screw processed material was better than the base polymer,it was inferior to the twin-screw compounded material. Finally,it was worse than both the base polymer and the twin-screw compounded material in Izod Impact strength. A similar study determined that a single-screw extruder could partially exfoliate a very compatible organoclay to form a Polyamide 6 based nanocomposite;but when a less compatible organoclay was used,a twin-screw extruder was required to improve dispersion.
編輯推薦
《材料科學(xué)與應(yīng)用進(jìn)展:聚合物納米復(fù)合材料手冊(cè)(導(dǎo)讀版)》全面綜述了聚合物納米復(fù)合材料的納米材料及聚合物基體的合成,聚合物納米復(fù)合材料的發(fā)展史、新技術(shù)及應(yīng)用。通過(guò)特征鮮明的科學(xué)或工業(yè)事例,闡述了聚合物納米復(fù)合材料中的科學(xué)、加工和技術(shù)的問(wèn)題。作者大多是各自領(lǐng)域知名的專家,有的來(lái)自全球知名的聚合物納米復(fù)合材料領(lǐng)域的公司,可以為讀者提供更好的工業(yè)化的指導(dǎo)。適合復(fù)合材料、化學(xué)化工、環(huán)境等領(lǐng)域的師生、科研人員閱讀參考。
圖書封面
評(píng)論、評(píng)分、閱讀與下載