緊李群

出版時(shí)間:2011-6  出版社:科學(xué)出版社  作者:塞潘斯基  頁(yè)數(shù):198  
Tag標(biāo)簽:無(wú)  

內(nèi)容概要

塞潘斯基編著的《緊李群(影印版)》是“國(guó)外數(shù)學(xué)名著系列”之一,內(nèi)容包括緊李群、群表示論、調(diào)和分析、李代數(shù)、阿貝爾李子群等??晒└叩仍盒?shù)學(xué)專(zhuān)業(yè)研究生、數(shù)學(xué)類(lèi)科研人員學(xué)習(xí)參考。

書(shū)籍目錄

Preface
1 Compact Lie Groups
1.1 Basic Notions
1.1.1 Manifolds
1.1.2 Lie Groups
1.1.3 Lie Subgroups and Homomorphisms
1.1.4 Compact Classical Lie Groups
1.1.5 Exercises
1.2 Basic Topology
1.2.1 Connectedness
1.2.2 Simply Connected Cover
1.2.3 Exercises
1.3 The Double Cover of SO(n)
1.3.1 Clifford Algebras
1.3.2 Spinn(IR) and Pin
1.3.3 Exercises
1.4 Integration
1.4.1 Volume Forms
1.4.2 Invafiant Integration
1.4.3 Fubini's Theorem
1.4.4 Exercises
2 Representations
2.1 Basic Notions
2.1.1 Definitions
2.1.2 Examples
2.1.3 Exercises
2.2 Operations on Representations
2.2.1 Constructing New Representations
2.2.2 Irreducibility and Schur's Lemma
2.2.3 Unitarity
2.2.4 Canonical Decomposition
2.2.5 Exercises
2.3 Examples of Irreducibility
2.3.1 SU(2) and Vn(C2)
2.3.2 SO(n) and Harmonic Polynomials
2.3.3 Spin and Half-Spin Representations
2.3.4 Exercises
3 Harmonic Analysis
3.1 Matrix Coefficients
3.1.1 Schur Orthogonality
3.1.2 Characters
3.1.3 Exercises
3.2 Infinite-Dimensional Representations
3.2.1 Basic Definitions and Schur's Lemma
3.2.2 G-Finite Vectors
3.2.3 Canonical Decomposition
3.2.4 Exercises
3.3 The Peter-Weyl Theorem
3.3.1 The Left and Right Regular Representation
3.3.2 Main Result
3.3.3 Applications
3.3.4 Exercises
3.4 Fourier Theory
3.4.1 Convolution
3.4.2 Plancherel Theorem
3.4.3 Projection Operators and More General Spaces
3.4.4 Exercises
4 Lie Algebras
4.1 Basic Definitions
4.1.1 Lie Algebras of Linear Lie Groups
4.1.2 Exponential Map
4.1.3 Lie Algebras for the Compact Classical Lie Groups
4.1.4 Exercises
4.2 Further Constructions
4.2.1 Lie Algebra Homomorphisms
4.2.2 Lie Subgroups and Subalgebras
4.2.3 Covering Homomorphisms
4.2.4 Exercises
5 Abelian Lie Subgroups and Structure
5.1 Abelian Subgroups and Subalgebras
5.1.1 Maximal Tori and Caftan Subalgebras
5.1.2 Examples
5.1.3 Conjugacy of Cartan Subalgehras
5.1.4 Maximal Torus Theorem
5.1.5 Exercises
5.2 Structure
5.2.1 Exponential Map Revisited
5.2.2 Lie Algebra Structure
5.2.3 Commutator Theorem
5.2.4 Compact Lie Group Structure
5.2.5 Exercises
6 Roots and Associated Structures
6.1 Root Theory
6.1.1 Representations of Lie Algebras
6.1.2 Complexification of Lie Algebras
6.1.3 Weights
6.1.4 Roots
6.1.5 Compact Classical Lie Group Examples
6.1.6 Exercises
6.2 The Standard s[(2, C) Triple
6.2.1 Cartan Involution
6.2.2 Killing Form
6.2.3 The Standard sl(2, C) and su(2) Triples
6.2.4 Exercises
6.3 Lattices
6.3.1 Definitions
6.3.2 Relations
6.3.3 Center and Fundamental Group
6.3.4 Exercises
6.4 Weyl Group
6.4.1 Group Picture
6.4.2 Classical Examples
6.4.3 Simple Roots and Weyl Chambers
6.4.4 The Weyl Group as a Reflection Group
6.4.5 Exercises
7 Highest Weight Theory
7.1 Highest Weights
7.1.1 Exercises
7.2 Weyl Integration Formula
7.2.1 Regular Elements
7.2.2 Main Theorem
7.2.3 Exercises
7.3 Weyl Character Formula
7.3.1 Machinery
7.3.2 Main Theorem
7.3.3 Weyl Denominator Formula
7.3.4 Weyl Dimension Formula
7.3.5 Highest Weight Classification
7.3.6 Fundamental Group
7.3.7 Exercises
7.4 Borel-Weil Theorem
7.4.1 Induced Representations
7.4.2 Complex Structure on G/T
7.4.3 Holomorphic Functions
7.4.4 Main Theorem
7.4.5 Exercises
References
Index

圖書(shū)封面

圖書(shū)標(biāo)簽Tags

無(wú)

評(píng)論、評(píng)分、閱讀與下載


    緊李群 PDF格式下載


用戶(hù)評(píng)論 (總計(jì)4條)

 
 

  •   這是有關(guān)緊李群的專(zhuān)著,非常專(zhuān)業(yè),適合數(shù)學(xué)專(zhuān)業(yè)或理論物理專(zhuān)業(yè)研究生閱讀!
  •   一本很精簡(jiǎn)的書(shū),也是一本比較新的書(shū)。介紹了李群和李代數(shù)的一些最基本的知識(shí)??偟膩?lái)說(shuō)比較貴,性?xún)r(jià)比不高;但是相對(duì)于原版來(lái)說(shuō),已經(jīng)很便宜了。世圖出版社買(mǎi)這個(gè)書(shū)的版權(quán)也是為了便宜一些。
  •   內(nèi)頁(yè)印刷字體不怎么清楚,而且字號(hào)小了一點(diǎn)!影印版就不能多為讀者想一想嗎?放大一點(diǎn)不行嗎??
  •   表示論側(cè)重於torus理論,正好可以結(jié)合GTM 98的緊李群表示論讀,互相補(bǔ)充.
 

250萬(wàn)本中文圖書(shū)簡(jiǎn)介、評(píng)論、評(píng)分,PDF格式免費(fèi)下載。 第一圖書(shū)網(wǎng) 手機(jī)版

京ICP備13047387號(hào)-7