<<数论导引>>

图书基本信息

书名:<<数论导引>>

13位ISBN编号: 9787030313867

10位ISBN编号:7030313860

出版时间:2011-6

出版时间:科学

作者:埃弗里斯特

页数:294

版权说明:本站所提供下载的PDF图书仅提供预览和简介,请支持正版图书。

更多资源请访问:http://www.tushu007.com

<<数论导引>>

内容概要

埃弗里斯特编著的《数论导引(影印版)》是"国外数学名著系列"之一,从最初等的数论知识谈起,一直讲到解析数论、代数数论、椭圆曲线以及数论在密码理论中的应用等,涉及范围很广阔,而且内容并不肤浅。

书中还有不少练习题,以及历史的评注等。

可供数论及相关专业研究生、教师及科研人员等学习参考。

<<数论导引>>

书籍目录

Introduction

- 1 A Brief History of Prime
- 1.1 Euclid and Primes
- 1.2 Summing Over the Primes
- 1.3 Listing the Primes
- 1.4 Fermat Numbers
- 1.5 Primality Testing
- 1.6 Proving the Fundamental Theorem of Arithmetic
- 1.7 Euclid's Theorem Revisited
- 2 Diophantine Equations
- 2.1 Pythagoras
- 2.2 The Fundamental Theorem of Arithmetic in Other Contexts
- 2.3 Sums of Squares
- 2.4 Siegel's Theorem
- 2.5 Fermat, Catalan, and Euler
- 3 Quadratic Diophantine Equations
- 3.1 Quadratic Congruences
- 3.2 Euler's Criterion
- 3.3 The Quadratic Reciprocity Law
- 3.4 Quadratic Rings
- 3.5 Units in Z
- 3.6 Quadratic Forms
- 4 Recovering the Fundamental Theorem of Arithmetic
- 4.1 Crisis
- 4.2 An Ideal Solution
- 4.3 Fundamental Theorem of Arithmetic for Ideals
- 4.4 The Ideal Class Group
- 5 Elliptic Curves
- 5.1 Rational Points
- 5.2 The Congruent Number Problem
- 5.3 Explicit Formulas
- 5.4 Points of Order Eleven
- 5.5 Prime Values of Elliptic Divisibility Sequences
- 5.6 Ramanujan Numbers and the Taxicab Problem
- 6 Elliptic Functions
- 6.1 Elliptic Functions
- 6.2 Parametrizing an Elliptic Curve
- 6.3 Complex Torsion
- 6.4 Partial Proof of Theorem 6.5
- 7 Heights
- 7.1 Heights on Elliptic Curves
- 7.2 Mordell's Theorem
- 7.3 The Weak Mordell Theorem: Congruent Number Curve
- 7.4 The Parallelogram Law and the Canonical Height
- 7.5 Mahler Measure and the Naive Parallelogram Law

<<数论导引>>

- 8 The Riemann Zeta Function
- 8.1 Euler's Summation Formula
- 8.2 Multiplicative Arithmetic Functions
- 8.3 Dirichlet Convolution
- 8.4 Euler Products
- 8.5 Uniform Convergence
- 8.6 The Zeta Function Is Analytic
- 8.7 Analytic Continuation of the Zeta Function
- 9 The Functional Equation of the Riemann Zeta Function
- 9.1 The Gamma Function
- 9.2 The Functional Equation
- 9.3 Fourier Analysis on Schwartz Spaces
- 9.4 Fourier Analysis of Periodic Functions
- 9.5 The Theta Function
- 9.6 The Gamma Function Revisited
- 10 Primes in an Arithmetic Progression
- 10.1 A New Method of Proof
- 10.2 Congruences Modulo 3
- 10.3 Characters of Finite Abelian Groups
- 10.4 Dirichlet Characters and L-Functions
- 10.5 Analytic Continuation and Abel's Summation Formula
- 10.6 Abel's Limit Theorem
- 11 Converging Streams
- 11.1 The Class Number Formula
- 11.2 The Dedekind Zeta Function
- 11.3 Proof of the Class Number Formula
- 11.4 The Sign of the Gauss Sum
- 11.5 The Conjectures of Birch and Swinnerton-Dyer
- 12 Computational Number Theory
- 12.1 Complexity of Arithmetic Computations
- 12.2 Public-key Cryptography
- 12.3 Primality Testing: Euclidean Algorithm
- 12.4 Primality Testing: Pseudoprimes
- 12.5 Carmichael Numbers
- 12.6 Probabilistic Primality Testing
- 12.7 The Agrawal-Kayal-Saxena Algorithm
- 12.8 Factorizing
- 12.9 Complexity of Arithmetic in Finite Fields

References

Index

编辑推荐

An Introduction to Number Theory provides an introduction to themain streams of number theory. Starting with the unique factorization property of the integers , the theme of factorization is revisited severaltimes throughout the book to illustrate how the ideas handed downfrom Euclid continue to reverberate through the subject. In particular , the book shows how the Fundamental Theorem of Arithmetic , handeddown from antiquity , informs much of the teaching of modern numbertheory. The result is that number theory will be understood , not as a collection of tricks and isolated results , but as a coherent and interconnected theory. A number of different approaches to numbertheory are presented , and the different streams in the book are broughttogether in a chapter that describes the class number formula forquadratic fields and the famous conjectures of Birch and Swinnerton-Dyer. The final chapter introduces some of the main ideas behindmodern computational number theory and its applications incryptography. Written for graduate and advanced undergraduatestudents 'of mathematics , this text will also appeal to students incognate subjects who wish to learn some of the big ideas in numbertheory.

<<数论导引>>

版权说明

本站所提供下载的PDF图书仅提供预览和简介,请支持正版图书。

更多资源请访问:http://www.tushu007.com