原子和分子光譜學(xué)

出版時(shí)間:2011-6  出版社:科學(xué)出版社  作者:斯萬(wàn)貝里  頁(yè)數(shù):588  
Tag標(biāo)簽:無(wú)  

內(nèi)容概要

  A wide-ranging review of modem spectroscopic
techniques such as X-ray, photoelectron, optical and laser
spectroscopy, and radiofrequency and microwave techniques. On the
fundamental side the book focuses on physical principles and the
impact of spectroscopy on our understanding of the building blocks
of matter, while in the area of applications particular attention
is given to those in chemical analysis, photochemistry, surface
characterisation, environmental and medical diagnostics, remote
sensing and astrophyscis. The Fourth Edition also provides the
reader with an update on laser cooling and trapping, Bose-Einstein
condensation, ultra-fast spectroscopy, highpower laser/matter
interaction, satellitebased astronomy and spectroscopic aspects of
laser medicine.

作者簡(jiǎn)介

作者:(美國(guó))斯萬(wàn)貝里(S.Svanberg)

書籍目錄

1. introduction
2. atomic structure
2.1 one-electron systems
2.2 alkali atoms
2.3 magnetic effects
2.3.1 precessional motion
2.3.2 spin-orbit interaction
2.4 general many-electron systems
2.5 the influence of external fields
2.5.1 magnetic fields
2.5.2 electric fields
2.6 hyperfine structure
2.6.1 magnetic hyperfine structure
2.6.2 electric hyperfine structure
2.7 the influence of external fields (hfs)
2.8 isotopic shifts
3. molecular structure
3.1 electronic levels
3.2 rotational energy
3.3 vibrational energy
3.4 polyatomic molecules
3.5 clusters
3.6 other molecular structures
4. radiation and scattering processes
4.1 resonance radiation
4.2 spectra generated by dipole transitions
4.2.1 atoms
4.2.2 molecules
4.3 rayleigh and raman scattering
4.4 raman spectra
4.4.1 vibrational raman spectra
4.4.2 rotational raman spectra
4.4.3 vibrational-rotational rarnan spectra
4.5 mie scattering
4.6 atmospheric scattering phenomena
4.7 comparison between different radiation and scattering
processes
4.8 collision-induced processes
5. spectroscopy of inner electrons
5.1 x-ray spectroscopy
5.1.1 x-ray emission spectroscopy
5.1.2 x-ray absorption spectroscopy
5.1.3 x-ray imaging applications
5.2 photoelectron spectroscopy
5.2.1 xps techniques and results
5.2.2 chemical shifts
5.3 auger electron spectroscopy
6. optical spectroscopy
6.1 light sources
6.1.1 line light sources
6.1.2 continuum light sources
6.1.3 synchrotron radiation
6.1.4 natural radiation sources
6.2 spectral resolution instruments
6.2.1 prism spectrometers
6.2.2 grating spectrometers
6.2.3 the fabry-p~rot interferometer
6.2.4 the fourier transform spectrometer
6.3 detectors
6.4 optical components and materials
6.4.1 interference filters and mirrors
6.4.2 absorption filters
6.4.3 polarizers
6.4.4 optical materials
6.4.5 influence of the transmission medium
6.5 optical methods of chemical analysis
6.5.1 the beer-lambert law
6.5.2 atomic absorption/emission spectrophotometry
6.5.3 burners, flames, sample preparation and measurements
6.5.4 modified methods of atomization
6.5.5 multi-element analysis
6.5.6 molecular spectrophotometry
6.5.7 raman spectroscopy
6.6 optical remote sensing
6.6.1 atmospheric monitoring with passive techniques
6.6.2 land and water measurements with passive techniques
6.7 astrophysical spectroscopy
7. radio-frequency spectroscopy
7.1 resonance methods
7.1.1 magnetic resonance
7.1.2 atomic-beam magnetic resonance
7.1.3 optical pumping
7.1.4 optical double resonance
7.1.5 level-crossing spectroscopy
7.1.6 resonance methods for liquids and solids
7.2 microwave radiometry
7.3 radio astronomy
8. lasers
8.1 basic principles
8.2 coherence
8.3 resonators and mode structure
8.4 fixed-frequency lasers
8.4.1 the ruby laser
8.4.2 four-level lasers
8.4.3 pulsed gas lasers
8.4.4 the he-ne laser
8.4.5 gaseous ion lasers
8.5 tunable lasers
8.5.1 dye lasers
8.5.2 colour-centre lasers
8.5.3 tunable solid-state lasers
8.5.4 tunable co2 lasers
8.5.5 semiconductor lasers
8.6 nonlinear optical phenomena
8.7 ultra-short and ultra-high-power laser pulse generation
8.7.1 short-pulse generation by mode-locking
8.7.2 generation of ultra-high power pulses
9. laser spectroscopy
9.1 basic principles
9.1.1 comparison between conventional light sources and
lasers
9.1.2 saturation
9.1.3 excitation methods
9.1.4 detection methods
9.1.5 laser wavelength setting
9.2 doppler-limited techniques
9.2.1 absorption measurements
9.2.2 intracavity absorption measurements
9.2.3 absorption measurements on excited states
9.2.4 level labelling
9.2.5 two-photon absorption measurements
9.2.6 opto-galvanic spectroscopy
9.2.7 single-atom and single-molecule detection
9.2.8 opto-acoustic spectroscopy
9.3 optical double-resonance and level-crossing experiments with
laser excitation
9.4 time-resolved atomic and molecular spectroscopy
9.4.1 generation of short optical pulses
9.4.2 measurement techniques for optical transients
9.4.3 background to lifetime measurements
9.4.4 survey of methods of measurement for radiative
properties
9.4.5 quantum-beat spectroscopy
9.5 ultrafast spectroscopy
9.5.1 ultrafast measurement techniques
9.5.2 molecular reaction dynamics (femtochemistry)
9.5.3 coherent control
9.6 high-power laser experiments
9.6.1 above threshold ionization (ati)
9.6.2 high harmonic generation
9.6.3 x-ray laser pumping
9.6.4 broadband x-ray generation
9.6.5 relativistic effects and laser accelerators
9.6.6 laser-nuclear interactions and laser-driven fusion
9.7 high-resolution laser spectroscopy
9.7.1 spectroscopy on collimated atomic and ionic beams
9.7.2 saturation spectroscopy and related techniques
9.7.3 doppler-free two-photon absorption
9.8 cooling and trapping of ions and atoms
9.8.1 introduction
9.8.2 ion traps
9.8.3 basic laser cooling in traps
9.8.4 trapped ion spectroscopy
9.8.5 atom cooling and trapping
9.8.6 sub-recoil cooling
9.8.7 atom optics
9.8.8 bose-einstein condensation and "atom lasers"
9.8.9 ultracold fermionic gases
10. laser-spectroscopic applications
10.1 diagnostics of combustion processes
10.1.1 background
10.1.2 laser-induced fluorescence and related techniques
10.1.3 raman spectroscopy
10.1.4 coherent anti-stokes raman scattering
10.1.5 velocity measurements
10.2 laser remote sensing of the atmosphere
10.2.1 optical heterodyne detection
10.2.2 long-path absorption techniques
10.2.3 lidar techniques
10.3 laser-induced fluorescence and raman spectroscopy in liquids
and solids
10.3.1 hydrospheric remote sensing
10.3.2 vegetation monitoring
10.3.3 monitoring of surface layers
10.4 laser-induced chemical processes
10.4.1 laser-induced chemistry
10.4.2 laser isotope separation
10.5 spectroscopic aspects of lasers in medicine
10.5.1 thermal interaction of laser light with tissue
10.5.2 photodynamic tumour therapy
10.5.3 tissue diagnostics with laser-induced fluorescence
10.5.4 scattering spectroscopy and tissue transillumination
questions and exercises
references
index

章節(jié)摘錄

版權(quán)頁(yè):插圖:9.1.3 Excitation MethodsSeveral different excitation schemes can be used in laser spectroscopy. This is illustrated in Fig. 9.1 for the case of alkali atoms.Single-Step Excitation. Atoms are transferred directly from the ground state to the excited state using an allowed electric dipole transition. This means an S-P transition for an alkali atom.Multi-Step Excitation. Since tunable lasers have high output powers enabling the saturation of optical transitions, stepwise excitation via short-lived intermediate states is possible. A two-step process has been indicated in the figure. For an alkali atom this may mean S-P-D transitions. Stepwise excitations give access to states that cannot normally be reached.Multi-Photon Absorption. At high laser powers higher-order optical absorption processes become non-negligible. Thus, it becomes possible for an atom to simultaneously absorb two photons, thus bridging energy differences between two states without utilizing real intermediate states. The theory of two-photon absorption processes was presented by M. Goeppert-Mayer as early as 1931, but only in 1961。could such transitions be observed with lasers.

編輯推薦

《原子和分子光譜學(xué):基礎(chǔ)及實(shí)際應(yīng)用(第4版)(影印版)》是國(guó)外物理名著系列27之一。

圖書封面

圖書標(biāo)簽Tags

無(wú)

評(píng)論、評(píng)分、閱讀與下載


    原子和分子光譜學(xué) PDF格式下載


用戶評(píng)論 (總計(jì)6條)

 
 

  •   很適合練習(xí)一下英語(yǔ)
  •   正版書籍,很好很給力。
  •   影印版的質(zhì)量還可以!
  •   好書,就是參考文獻(xiàn)太多,100多頁(yè)
  •   全英文版的,還沒(méi)看,貌似作用不大!
  •   這本書是名著,不必過(guò)多評(píng)論它的質(zhì)量,就說(shuō)說(shuō)你們的服務(wù)質(zhì)量吧。我無(wú)法理解的是,全球第一大網(wǎng)絡(luò)書店,服務(wù)為什么如此之差,不是單獨(dú)哪個(gè)方面差,而是“面面俱到”地差。第一,和這本書一起,我還訂購(gòu)了另一本書,你們?cè)谖赐ㄖ业那闆r下拆單了,迫使我不得不為了一個(gè)單子取了兩次書。第二,我當(dāng)時(shí)填單子的時(shí)候要求“盡量在5月4日送達(dá)”,你們網(wǎng)站上自動(dòng)生成的也是“預(yù)計(jì)5月4日送達(dá)”。不能按時(shí)送達(dá)也沒(méi)什么,問(wèn)題是,我5月4日下午4點(diǎn)查單的時(shí)候,這本書還處于“正在出庫(kù)”的狀態(tài),你們的網(wǎng)頁(yè)上卻居然還寫著“預(yù)計(jì)5月4日送達(dá)”!到這個(gè)點(diǎn)還沒(méi)出庫(kù),就是動(dòng)用飛機(jī)也不能按時(shí)送到吧?第三,我填單子的時(shí)候要求在工作日投送到青島大學(xué),你們倒是在工作日5月4日17:15通知我取書,可是你們青島的管理員難道不知道17:30是青島大學(xué)的老師坐班車時(shí)間嗎?我不得不跑著去取書,又跑回候車點(diǎn),險(xiǎn)些沒(méi)趕上班車!第四,既然我已經(jīng)要求工作日投送了,為什么你們?cè)诓饐魏笥忠谥芰衔缤ㄖ业角啻笕兀空?qǐng)告訴我,在你們的數(shù)據(jù)庫(kù)里記錄著哪家大學(xué)把周六當(dāng)作工作日的?第五,這本書中間有好幾頁(yè)被水泡過(guò)了,還有一頁(yè)上沾上了泥。別跟我說(shuō)你們沒(méi)看到,被泡的那幾頁(yè)已經(jīng)發(fā)皺了,不用打開(kāi)書從側(cè)面就能看到。看到了吧,你們的服務(wù)不是哪一個(gè)環(huán)節(jié)出了問(wèn)題,而是所有環(huán)節(jié)都有問(wèn)題,除了書的內(nèi)容——可惜書不是你們寫的!
 

250萬(wàn)本中文圖書簡(jiǎn)介、評(píng)論、評(píng)分,PDF格式免費(fèi)下載。 第一圖書網(wǎng) 手機(jī)版

京ICP備13047387號(hào)-7