隨機微分方程及其在數(shù)理金融中的應(yīng)用

出版時間:2010-7  出版社:科學(xué)出版社  作者:蒲興成,張毅 著  頁數(shù):184  
Tag標簽:無  

前言

  隨機微分方程作為一門新興的數(shù)學(xué)學(xué)科,其理論基礎(chǔ)的建立是在20世紀60年代。該學(xué)科在很多領(lǐng)域有廣泛的應(yīng)用前景。隨著隨機分析理論的迅速發(fā)展,隨機微分方程理論被廣泛應(yīng)用于系統(tǒng)科學(xué)、工程科學(xué)和生態(tài)科學(xué)等各個方面。  將隨機微分方程應(yīng)用于金融領(lǐng)域是最近三十年的一個熱門話題。例如,用隨機微分方程來解決期權(quán)定價問題是隨機微分方程在金融中的一個成功應(yīng)用。1973年:Fischer Black和:Myron Scholes利用無風(fēng)險投資理論和隨機微分方程理論,得到了著名的:Black-Scholes隨機偏微分方程,并利用相應(yīng)的邊界條件和概率方法得到了歐式看漲(跌)期權(quán)價格的計算公式,從而奠定了金融工程的核心基礎(chǔ),開拓了金融工程從定性分析進入定量分析的時代。  本書的目的是系統(tǒng)介紹隨機微分方程的基礎(chǔ)理論及其在數(shù)理金融中的應(yīng)用。要達到此目的,必須解決兩個問題:一個是隨機微分方程的基本理論;另一個是隨機微分方程在數(shù)理金融中的具體應(yīng)用。本書的前9章主要介紹隨機微分方程的一些基礎(chǔ)理論,后9章主要介紹隨機微分方程在數(shù)理金融中的具體應(yīng)用?! ”緯容^注重基本理論、原理、基本方法和實例等方面的介紹,以求達到拋磚引玉的作用。但本書作為隨機微分方程應(yīng)用的概括還不盡全面,如濾波、隨機控制、隨機系統(tǒng)的性能分析和隨機脈沖隨機微分方程等方面涉及很少,有興趣的讀者可以自行查找相關(guān)文獻了解;或者根據(jù)讀者意見,再版時再進行適當補充和修改?! ”緯窃诤芏嗳说年P(guān)心和幫助下完成的。在編寫過程中,吳慧蓮老師、楊春德教授和鄭繼明老師給予了諸多幫助,并提出了很多的建議,科學(xué)出版社的相關(guān)老師也為本書的出版付出了辛勤的勞動,還有研究生張軍、孫凱和曾凡海也對本書格式作了一些修訂,在此一并表示感謝。

內(nèi)容概要

  《隨機微分方程及其在數(shù)理金融中的應(yīng)用》系統(tǒng)介紹了隨機微分方程的基礎(chǔ)理論,并重點敘述了隨機微分方程在數(shù)理金融中的具體應(yīng)用。前9章主要介紹了布朗運動、Ito積分、隨機微分方程解的存在性和唯一性、伊藤分布、擴散理論、隨機微分方程在邊界值問題和最優(yōu)停時問題中的應(yīng)用。后9章主要介紹了非均衡市場中套利選擇、市場完備性條件、完備市場下期權(quán)定價和套期交易策略的選擇Black-Scholes公式及其應(yīng)用、期權(quán)價格的計算、與期權(quán)定價密切相關(guān)的利率模型、特殊類型的金融模型、Hamilton-Jacobi-Bellman方程與風(fēng)險投資等金融工程中的一些核心內(nèi)容?!  峨S機微分方程及其在數(shù)理金融中的應(yīng)用》可供高等院校本科生、研究生、教師和相關(guān)研究單位的科研人員參考

書籍目錄

前言第1章 緒論1.1 隨機微分方程的起源和應(yīng)用1.2 隨機微分方程的經(jīng)典應(yīng)用舉例1.3 隨機微分方程與數(shù)理金融的關(guān)系1.4 本書的主要內(nèi)容第2章 預(yù)備知識2.1 概率空間、隨機變量和隨機過程2.2 布朗運動2.3 布朗運動與金融數(shù)學(xué)第3章 Ito積分3.1 Ito積分的構(gòu)造3.2 Ito積分的一些性質(zhì)3.3 Ito積分的推廣3.4 Ito積分與Stratonovich積分的比較第4章 伊藤公式與鞅表示定理4.1 一維的伊藤公式4.2 多維的伊藤公式4.3 鞅表示定理第5章 隨機微分方程解的存在性和唯一性5.1 隨機微分方程的一些實例和求解方法5.2 隨機微分方程解的存在性和唯一性定理5.3 隨機微分方程強解和弱解第6章 伊藤分布的基本性質(zhì)6.1 馬爾可夫性6.2 強馬爾可夫性6.3 伊藤分布算子6.4 Dynkin公式6.5 特征算子第7章 擴散理論7.1 Kolmogorov倒向方程7.2 Feynman.-Kac公式7.3 鞅問題7.4 伊藤過程函數(shù)的擴散條件7.5 隨機時間變化7.6 Girsanov定理第8章 在邊界值問題中的應(yīng)用8.1 復(fù)合Dirichlet-Poisson問題的解的唯一性8.2 Dirichlet問題8.3 Poisson問題第9章 在最優(yōu)停時問題中的應(yīng)用9.1 時齊情形9.2 非時齊的情形9.3 積分限制下的最優(yōu)停時問題9.4 與變分不等式的聯(lián)系第10章 非均衡市場中投資組合套利分析10.1 基本定義10.2 基本引理]10.3 非均衡市場套利機會的存在性定理10.4 舉例說明]第11章 基于隨機微分方程的市場完備性理論研究11.1 基本定義11.2 基本引理11.3 市場完備性的判別定理與推論11.4 舉例說明第12章 基于隨機微分方程在完備市場下的期權(quán)定價與套期交易策略的選擇12.1 基本定義12.2 兩個引理12.3 均衡價格的存在性定理第13章 Black-Scholes公式及其應(yīng)用13.1.Black-Scholes公式的推導(dǎo)13.2 Black-Scholes公式的應(yīng)用13.3 Black-Scholes公式下的美式期權(quán)第14章 期權(quán)價格的計算14.1 歐式期權(quán)與美式看漲期權(quán)價格的計算14.2 美式看跌期權(quán)價格的數(shù)字化計算14.3 有限維不等式的數(shù)字解法14.4 美式看跌期權(quán)的二項計算方法第15章 與期權(quán)定價密切相關(guān)的利率模型15.1 模型的基本性質(zhì)15.2 幾個古典模型第16章 其他金融模型16.1 不連續(xù)的隨機金融模型16.2 風(fēng)險資產(chǎn)模型第17章 與期權(quán)價格計算相關(guān)的幾個函數(shù)的模擬與程序設(shè)計17.1 均勻分布[0,1]上的模擬17.2 高斯分布的模擬程序設(shè)計17.3 指數(shù)分布的模擬17.4 泊松隨機變量的模擬17.5 布朗運動的模擬17.6 隨機微分方程的模擬17.7 跳躍分布模型模擬17.8 高斯變量分布函數(shù)的估計17.9 Brennan和Schwartz方法的補充第18章 Hamilton-Jacobi-Bellman方程與風(fēng)險投資18.1 隨機控制問題描述18.2 Hamilton-Jacobi-Bellman方程18.3 Hamilton-Jacobi-Bellman方程的應(yīng)用參考文獻

章節(jié)摘錄

  將布朗運動與股票價格行為聯(lián)系在一起,進而建立起維納過程的數(shù)學(xué)模型是本世紀的一項具有重要意義的金融創(chuàng)新,在現(xiàn)代金融數(shù)學(xué)中占有重要地位。迄今,普遍的觀點仍認為,股票市場是隨機波動的,隨機波動是股票市場最根本的特性,是股票市場的常態(tài)?! 〔祭蔬\動假設(shè)是現(xiàn)代資本市場理論的核心假設(shè)。現(xiàn)代資本市場理論認為證券期貨價格具有隨機性特征。所謂隨機性,是指數(shù)據(jù)的無記憶性,即過去數(shù)據(jù)不構(gòu)成對未來數(shù)據(jù)的預(yù)測基礎(chǔ)。同時不會出現(xiàn)驚人相似的反復(fù)。隨機現(xiàn)象的數(shù)學(xué)定義是:在個別試驗中其結(jié)果呈現(xiàn)出不確定性;在大量重復(fù)試驗中其結(jié)果又具有統(tǒng)計規(guī)律性的現(xiàn)象。描述股價行為模型之一的布朗運動之維納過程是馬爾可夫隨機過程的一種特殊形式;而馬爾可夫過程是一種特殊類型的隨機過程。隨機過程是建立在概率空間上的概率模型,被認為是概率論的動力學(xué),即它的研究對象是隨時間演變的隨機現(xiàn)象。所以,隨機行為是一種具有統(tǒng)計規(guī)律性的行為。股價行為模型通常用著名的維納過程來表達。假定股票價格遵循一般化的維納過程是很具誘惑力的,也就是說,它具有不變的期望漂移率和方差率。維納過程說明只有變量的當前值與未來的預(yù)測有關(guān),變量過去的歷史和變量從過去到現(xiàn)在的演變方式則與未來的預(yù)測不相關(guān)。股價的馬爾可夫性質(zhì)與弱型市場有效性(the weak form of market,efficiencyl相一致,也就是說,一種股票的現(xiàn)價已經(jīng)包含了所有信息,當然包括了所有過去的價格記錄。但是當人們開始采用分形理論研究金融市場時,發(fā)現(xiàn)它的運行并不遵循布朗運動,而是服從更為一般的分數(shù)布朗運動。

圖書封面

圖書標簽Tags

評論、評分、閱讀與下載


    隨機微分方程及其在數(shù)理金融中的應(yīng)用 PDF格式下載


用戶評論 (總計0條)

 
 

 

250萬本中文圖書簡介、評論、評分,PDF格式免費下載。 第一圖書網(wǎng) 手機版

京ICP備13047387號-7