出版時間:2010-8 出版社:科學(xué)出版社 作者:斯奎爾 編 頁數(shù):766
Tag標(biāo)簽:無
前言
什么是百科全書?這一名詞來自于兩個希臘單詞:enkuklios(意思是循環(huán)的)和paideia(意思是教育)。在16世紀(jì)早期,拉丁手稿的抄寫者們將這兩個單詞合而為一,其在英語中演化為一個單詞,意思是具有廣泛指導(dǎo)意義的工具書(The American Heritage Dictionary,2000,Boston:Houghton:Mifflin,p.589)。從其來源可見,其希臘文原詞中蘊含著以探索、綜合的方式努力獲取知識的含義。無論是拉丁文還是英文,該單詞泛指涵蓋廣泛領(lǐng)域知識的工具書。希臘文中強調(diào)的以創(chuàng)造性手段獲取知識,在神經(jīng)科學(xué)領(lǐng)域尤其適用。神經(jīng)科學(xué)本身就是一個非常新的名詞。Francis Schmitt在本書第一版的前言中指出,本書的編寫過程就是將不同領(lǐng)域的科學(xué)家們聚集在一起,沖擊大腦研究中最頑固的難題。他推動建立了神經(jīng)科學(xué)研究項目(Neuroscience Research Program,簡稱NRP)。早期的NRP成員包括一些學(xué)術(shù)巨匠,如因關(guān)于光合作用的研究獲得諾貝爾獎的Melvin Calvin、諾貝爾獎獲得者物理化學(xué)家Manfred Eigen、生物化學(xué)家Albert L,ehninger,和當(dāng)時正在努力破解基因編碼的年輕分子生物學(xué)家Marshall Nirenberg。Schmitt建立NRP的時候,神經(jīng)科學(xué)作為一門綜合學(xué)科還幾乎不存在。微電極的發(fā)明使神經(jīng)生理學(xué)家們得以記錄單細胞的電活動,但是幾乎不可能甄別其生物化學(xué)特性。一個重要的推進來自20世紀(jì)60年代中期涌現(xiàn)的Falck.Hillarp熒光顯微鏡技術(shù),它能夠選擇性地觀察兒茶酚胺和5一羥色胺能神經(jīng)元。這些胺類通路的研究又很快使得檢測選擇性損傷后效應(yīng)的行為學(xué)家們和生化學(xué)家們開始合作研究,使得后者的工作不再局限于在整個腦組織勻漿的水平研究神經(jīng)遞質(zhì)。20世紀(jì)70年代關(guān)于神經(jīng)遞質(zhì)受體的生化研究、它們位點的放射自顯影研究,以及神經(jīng)多肽的免疫組織化學(xué)研究,更是進一步促進了神經(jīng)生理學(xué)家、神經(jīng)解剖學(xué)家、神經(jīng)化學(xué)家和神經(jīng)藥理學(xué)家們的對話。而過去兩個世紀(jì)以來,分子生物學(xué)技術(shù)手段的應(yīng)用更加豐富了這一交流。神經(jīng)科學(xué)的爆炸性發(fā)展也體現(xiàn)在神經(jīng)科學(xué)學(xué)會(Society。for Neuroscience,SFN)的歷史上。SFN于1970年(譯者注:SFN網(wǎng)站中所寫的時間為1969年)由幾百名研究人員在華盛頓特區(qū)
內(nèi)容概要
《神經(jīng)科學(xué)百科全書》原書篇幅巨大,為所有神經(jīng)科學(xué)百科全書之首。由來自世界各地的2400多位專家撰稿人合力打造,覆蓋了神經(jīng)科學(xué)全部主要領(lǐng)域。書中每個詞條在收入書中之前均經(jīng)過顧問委員會的同行評議,詞條中均含有詞匯表、引言、參考文獻和豐富的交叉參考內(nèi)容。 主編為著名神經(jīng)科學(xué)家、美國神經(jīng)科學(xué)學(xué)會前主席Larry R.Squire。 內(nèi)容平易,本科生即可讀懂。 深度和廣度獨一無二,足可滿足專家學(xué)者的需要。 導(dǎo)讀版精選原書中的部分主題,按內(nèi)容重新編排,更適合國內(nèi)讀者購買和閱讀。
作者簡介
編者:(美國)斯奎爾(Larry R.Squire)
書籍目錄
神經(jīng)遞質(zhì)與受體Astrocyte: Neurotransmitter and Hormone ReceptorsCotransmissionNeuropeptides and CoexistenceNeurotransmitter and Hormone Receptors on Oligodendrocytes and Schwann CellsNeurotransmitters and Growth Factors: OverviewNitric Oxide氨基酸與嘌呤AdenosineAdenosine Triphosphate (ATP)Adenosine Triphosphate (ATP) as a NeurotransmitterAMPA Receptor Cell Biology/TraffickingAMPA Receptors: DiseaseAMPA Receptors: Molecular Biology and PharmacologyCalcium Waves: Purinergic RegulationD-Serine: From Its Synthesis in Giial Cell to Its Action on Synaptic Transmission and PlasticityGABA Synthesis and MetabolismGABAA Receptor Synaptic FunctionsGABAA Receptors and DiseaseGABAA Receptors: Developmental RolesGABAA Receptors: Molecular Biology, Cell Biology, and PharmacologyGABAB Receptor FunctionGABAn Receptors: Molecular Biology and PharmacologyGamma-Aminobutyric Acid (GABA)Glial Glutamate Transporters: ElectrophysiologyGlutamateGlutamate Receptor Clusters: Narp, EphB2 Receptor, StargazinGlutamate Receptor Organization: Ultrastructural InsightsGlutamate Regulation of Dendritic Spine Form and FunctionGlutamatergic and Gabaergic SystemsGlycine Receptors: Molecular and Cell BiologyHerbal Products and GABA ReceptorsKainate Receptor FunctionsKainate Receptors: Molecular and Cell BiologyLong-Term Depression (LTD): Metabotropic Glutamate Receptor (mGluR) and NMDAR-Dependent FormsLong-Term Potentiation (LTP): NMDA Receptor RoleLong-Term Potentiation and Long-Term Depression in Experience-Dependent PlasticityMetabotropic Glutamate Receptors (mGluRs): FunctionsMetabotropic Glutamate Receptors (mGluRs): Molecular Biology, Pharmacology and Cell BiologyNMDA Receptor Function and Physiological ModulationNMDA Receptors and DevelopmentNMDA Receptors and DiseaseNMDA Receptors, Cell Biology and TraffickingP2X ReceptorsPharmacology of Sleep: AdenosinePostsynaptic Density/Architecture at Excitatory SynapsesPurinergic ReceptorsPurines and Purinoceptors: Molecular Biology OverviewTransporter Proteins in Neurons and Glia胺與乙酰膽堿Acetylchollne Neurotransmission in CNSAcetylcholinesteraseAcetylchollnesterase Inhibitors and Alzheimer's DiseaseAdenosine Receptor Mediated FunctionsAdrenergic ReceptorsAmphetaminesAttention Deficit Hyperactivity Disorder (ADHD): Methylphenidate (Ritalin) and DopamineAversive Emotions: Genetic Mechanisms of SerotoninBrain Adrenergic NeuronsCells: 5-Hydroxytryptamine ReceptorsCholinergic Neurotransmission in the Autonomic and Somatic Motor Nervous System.Chollnergic Pathways in CNSCholinergic SystemDopamineDopamine-CNS Pathways and NeurophysiologyDopamlne Control of ArousalDopanune in PerspectiveDopannne Neurons: Reward and UncertaintyDopannne Receptors and Antipsychotic Drugs in Health and DiseaseDopannne: Cellular ActionsDopaminergic Agonists and L-DOPAHistamine Receptors and their Ligands: Mechanisms and Applications3,4-Methylenedioxymethamphetamine (MDMA, "Ecstasy")Monoamine Transporters: Focus on the Regulation of Serotonin Transporter by CytokinesMonoaminesMonoamines: Human Brain ImagingMonoamines: Release StudiesMuscarinic Receptors: Autonomic NeuronsNeurolepticsNeutrotransmission and Neuromodulation: AcetylcholineNicotineNicotinic Aeetylcholine ReceptorsNicotinic Receptors: Autonomic NeuronsNoradrcnalineNorepinephrine: Adrenergic ReceptorsNorcpinephrine: CNS Pathways and NeurophysiologyOctopamine and Other Monoamines in InvertebratesSerotonin (5-Hydroxytryptamine; 5-HT): Neurotransmissionand NeuromodulationSerotonin (5-Hydroxytryptamine; 5-HT): CNS Pathways and NeurophysiologySerotonin (5-Hydroxytryptamine; 5-HT): ReceptorsSerotonin and the Regulation of Mammalian Circadian RhythmsSerotonin-Related Psychedelic DrugsSleep-Wake State Regulation by AcetylcholineSympathomimetic Drugs and Adrenergic Receptor AntagonistsTrace Monoamines and Receptors in Mammalian CNS原書詞條中英對照表
章節(jié)摘錄
插圖:For many years, the understanding of neurotransmis-sion has been dominated by the concept that oneneuron releases only a single transmitter, known as'Dale's Principle.' This idea arose from a widelyadopted misinterpretation of Dale's suggestion in1935 that the same neurotransmitter was stored inand released from all terminals of a single neuron, asuggestion which did not specifically preclude thepossibility that more than one transmitter may beassociated with the same neuron. Several lines of evi-dence emerged which were inconsistent with the sin-gle transmitter concept, and it is now known thatindividual neurons contain and can release a largenumber and variety of substances which are capableof influencing target cells. This phenomenon of'cotransmission' is widespread, involving virtuallyall known transmitter systems. Early hints of cotransmission came in the 1950swith evidence for the involvement of both noradren-aline (NA) and acetylcholine (ACh) in sympathetictransmission. Koelle identified acetylcholinesterase insome adrenergic neurons in 1955, while Burn andRand introduced the concept of a 'cholinergic' linkin adrenergic transmission in 1959. Another line ofevidence provided by Hillarp concerned the coexis-tence of adenosine 5'-triphosphate (ATP) with cate-cholamines, first in adrenal chromaffin Cells and laterin sympathetic nerves. Inconsistencies in the singletransmitter hypothesis provided by these and otherstudies from the early literature were rationalized inan article by Burnstock in 1976 with the provocativetitle,"Do some nerve cells release more than one trans-mitter?" Today it is widely accepted that cotransmis-sion is an integral feature of neurotransmission. A role for ATP as a cotransmitter in sympathetic,parasympathetic, sensory-motor, and enteric nonadre-nergic, noncholinergic (NANC) inhibitory nerves wassupported by research from Burnstock and colleagues,while H6kfelt and colleagues focused on the co-localization, vesicular storage, and release of peptidesfrom both peripheral and central nerves.
圖書封面
圖書標(biāo)簽Tags
無
評論、評分、閱讀與下載