節(jié)律與同步

出版時間:2010-8  出版社:科學出版社  作者:斯奎爾 編  頁數(shù):652  

前言

什么是百科全書?這一名詞來自于兩個希臘單詞:enkuklios(意思是循環(huán)的)和paideia(意思是教育)。在16世紀早期,拉丁手稿的抄寫者們將這兩個單詞合而為一,其在英語中演化為一個單詞,意思是具有廣泛指導意義的工具書(The。4mericanHeritageDictionary,2000,Boston:Houghton Mimin,p.589)。從其來源可見,其希臘文原詞中蘊含著以探索、綜合的方式努力獲取知識的含義。無論是拉丁文還是英文,該單詞泛指涵蓋廣泛領域知識的工具書。希臘文中強調的以創(chuàng)造性手段獲取知識,在神經(jīng)科學領域尤其適用。神經(jīng)科學本身就是一個非常新的名詞。Francis Schmitt在本書第一版的前言中指出,本書的編寫過程就是將不同領域的科學家們聚集在一起,沖擊大腦研究中最頑固的難題。他推動建立了神經(jīng)科學研究項目(Neuroscience Research Program,簡稱NRP)。早期的NRP成員包括一些學術巨匠,如因關于光合作用的研究獲得諾貝爾獎的:Melvin Calvin、諾貝爾獎獲得者物理化學家Manfred. Eigen、生物化學家Albert Lehninger,和當時正在努力破解基因編碼的年輕分子生物學家Marshall Nirenberg。Schmitt建立NRP的時候,神經(jīng)科學作為一門綜合學科還幾乎不存在。微電極的發(fā)明使神經(jīng)生理學家們得以記錄單細胞的電活動,但是幾乎不可能甄別其生物化學特性。一個重要的推進來自20世紀60年代中期涌現(xiàn)的Falck-Hillarp熒光顯微鏡技術,它能夠選擇性地觀察兒茶酚胺和5一羥色胺能神經(jīng)元。這些胺類通路的研究又很快使得檢測選擇性損傷后效應的行為學家們和生化學家們開始合作研究,使得后者的工作不再局限于在整個腦組織勻漿的水平研究神經(jīng)遞質。20世紀70年代關于神經(jīng)遞質受體的生化研究、它們位點的放射自顯影研究,以及神經(jīng)多肽的免疫組織化學研究,更是進一步促進了神經(jīng)生理學家、神經(jīng)解剖學家、神經(jīng)化學家和神經(jīng)藥理學家們的對話。而過去兩個世紀以來,分子生物學技術手段的應用更加豐富了這一交流。神經(jīng)科學的爆炸性發(fā)展也體現(xiàn)在神經(jīng)科學學會(Society for Neuroscience,SFN)的歷史上。sFN于1970年(譯者注:SFN網(wǎng)站中所寫的時間為1969年)由幾百名研究人員在華盛頓特區(qū)創(chuàng)立,首任會長是Vernon Mountcastle。而當我于1980年擔任會長時,會員人數(shù)已經(jīng)增長到。7000人。我當時的一個主要任務是應對關于學會存在合理性的爭論。有人認為“我們學會的科學家人數(shù)太多了。應當將其一分為二,如實驗類的和理論類的”。與此相反,為了強調該領域的整體特點,我們推出了《神經(jīng)科學雜志》(.Journal of Neuroscience)。同時,我們認為學會的增長可能會最終進入平臺期,精心的會議組織將可以避免會員個人“在會議的人潮中迷失”。現(xiàn)在看來,我當時關于平臺期的預言偏離了實際。截至2007年5月,神經(jīng)科學學會的會員人數(shù)已經(jīng)超過了38 000名,其中超過35 000人參加每年的年會,這樣的規(guī)模超過了其他任何生物醫(yī)學類的學會。

內容概要

《神經(jīng)科學百科全書》原書篇幅巨大,為所有神經(jīng)科學百科全書之首。由來自世界各地的2400多位專家撰稿人合力打造,覆蓋了神經(jīng)科學全部主要領域。每個詞條在收入書中之前均經(jīng)過顧問委員會的同行評議,詞條中均含有詞匯表、引言、參考文獻和豐富的交叉參考內容。    主編為著名神經(jīng)科學家、美國神經(jīng)科學學會前主席LarryR.Squire。內容平易,本科生即可讀懂。深度和廣度獨一無二,足可滿足專家學者的需要。導讀版精選原書中的部分主題,按內容重新編排,更適合國內讀者購買和閱讀。

作者簡介

編者:(美國)斯奎爾(Larry R.Squire)

書籍目錄

晝夜節(jié)律  Circadian Function and Therapeutic Potential of Melatonin in Humans  Circadian Gene Expression in the Suprachiasmatic Nucleus  Circadian Genes and the Sleep-Wake Cycle  Circadian Metabolic Rhythms Regulated by the Suprachiasmatic Nucleus  Circadian Organization  Circadian Organization in Non-Mammalian Vertebrates  Circadian Oscillations in the Suprachiasmatic Nucleus  Circadian Regulation by the Suprachiasmatic Nucleus  Circadian Regulation in Invertebrates  Circadian Rhythm Models  Circadian Rhythms in Sleepiness, Alertness, and Performance  Circadian Rhythms: Influence of Light in Humans  Circadian Systems: Evolution  Clock Gene Regulation of Endocrine Function  Clock Genes and Metabolic Regulation  Entrainment of Circadian Rhythms by Light  Genetic Regulation of Circadian Rhythms in Drosophila  Genetics of Circadian Disorders in Humans  Mammalian Sleep and Circadian Rhythms: Flies  Melatonin Regulation of Circadian Rhythmicity in Vertebrates  Non-Photoreceptor Photoreception  Peripheral Circadian Oscillators  Photoreceptors and Circadian Clocks  Psychiatric Disorders Associated with Disturbed Sleep and Circadian Rhythms.  Serotonin and the Regulation of Mammalian Circadian Rhythms  Shift Work and Circadian Rhythms  Single Cell Neuronal Circadian Clocks  Sleep and Circadian Rhythm Disorders in Human Aging and Dementia  Sleep and Waking in Drosophila  Sleep: Development and Circadian Control  Transcription Control and the Circadian Clock季節(jié)節(jié)律  Photoperiodic Regulation of Reproductive Cycles  Seasonal Changes in Night-Length and Impact on Human Sleep  Seasonal Hormonal Changes and Behavior  Seasonal Timing: Neural Mechanisms睡眠、做夢與清醒  Autonomic Dysregulati0n During REM Sleep  Cataplexy  Coma  Dopamine Control of Arousal  Dream Function  Dreams and Dreaming: Incorporation of Waking Events  Dreams and Nightmares in PTSD  Dreams, Dreaming Theories and Correlates of Nightmares  Endocrine Function During Sleep and Sleep Deprivation  Hibernation  Immune Function During Sleep and Sleep Deprivation  Metabolic Syndrome and Sleep  Napping  Narcolepsy  Nightmares  Parasomnias  Pharmacology of Sleep: Adenosine  Reticular Activating System  Sleep and Circadian Rhythm Disorders in Human Aging and Dementia  Sleep and Sleep States: Gene Expression  Sleep and Sleep States: Hippocampus-Neocortex Dialog  Sleep and Sleep States: Histamine Role  Sleep and Sleep States: Hypothalamic Regulation  Sleep and Sleep States: Network Reactivation  Sleep and Sleep States: PET Activation Patterns  Sleep and Sleep States: Phylogeny and Ontogeny  Sleep and Sleep States: Thalamic Regulation  Sleep Apnea  Sleep Architecture  Sleep Deprivation and Brain Function  sleep Deprivation: Neurobehavioral Changes  Sleep in Adolescents  Sleep in Aging  Sleep Mentation in REM and NREM: A Neurocognitive Perspective  Sleep Oscillations  Sleep Oscillations and PGO Waves  Sleep Research and Sleep Medicine in Historical Perspective  Sleep-Dependent Memory Processing  Sleeping Sickness  Sleep-Wake State Regulation by Acetylcholine  Sleep-Wake State Regulation by Noradrenaline and Serotonin  Stimulant and Wake-Promoting Substances  The AIM Model of Dreaming, Sleeping, and Waking Consciousness  Thermoregulation during Sleep and Sleep Deprivation原書詞條中英對照表

章節(jié)摘錄

插圖:The alternation of light and dark is the most reliable timing cue on our planet, and therefore it is not surprising that the retina has evolved a precise timing mechanism that allows it to anticipate and then to adapt to the more than 1 million-fold change in light intensity during a 24 h period.   The retina was the first extra-SCN oscillator to be discovered in mammals. Several studies have now demonstrated that many of the physiological, cellular, and molecular rhythms that are present within the retina are under the control of a circadian clock, or more likely a series of circadian clocks that are present within this tissue (Figure 1). For example, the disk shedding that occurs in the rod photoreceptors is under circadian control. Shedding persists in animals with SCN lesions or a transected optic nerve, indicating its independence from the central circadian pacemaker. Additional studies have reported that sensitivity to light-induced photoreceptor damage is modulated by the circadian clock via a cyclic adenosine monophosphate (cAMP)-dependent pathway. Other important retinal functions, such as visual sensitivity, are also under circadian control.   Although results from these studies suggested that retinal physiology was regulated by a circadian clock, they were not sufficient to conclude that an independent circadian pacemaker was located within the retinal tissue. The definitive demonstration of the presence of an autonomous retinal clock in mammals was achieved a few years ago when it was shown that a circadian rhythm of melatonin release persisted in mammalian retinas maintained in culture. In light/ dark cycles, melatonin levels were high during the night and low during the day. In constant darkness, the circadian rhythm of melatonin release free-ran, exhibiting a period close to 24 h. The circadian rhythm of melatonin release in the retina can be entrained by light in vitro and is temperature compensated. Such results demonstrated that the retina can be considered a bona fide circadian pacemaker, since it satisfies the three fundamental properties (i.e., freerunning, entrainment, and temperature compensation) that describe a circadian rhythm.

編輯推薦

《神經(jīng)科學百科全書14:節(jié)律與同步(導讀版)》是由科學出版社出版的。

圖書封面

評論、評分、閱讀與下載


    節(jié)律與同步 PDF格式下載


用戶評論 (總計0條)

 
 

 

250萬本中文圖書簡介、評論、評分,PDF格式免費下載。 第一圖書網(wǎng) 手機版

京ICP備13047387號-7