出版時間:2010-8 出版社:科學(xué)出版社 作者:斯奎爾 編 頁數(shù):652
前言
什么是百科全書?這一名詞來自于兩個希臘單詞:enkuklios(意思是循環(huán)的)和paideia(意思是教育)。在16世紀(jì)早期,拉丁手稿的抄寫者們將這兩個單詞合而為一,其在英語中演化為一個單詞,意思是具有廣泛指導(dǎo)意義的工具書(The。4mericanHeritageDictionary,2000,Boston:Houghton Mimin,p.589)。從其來源可見,其希臘文原詞中蘊含著以探索、綜合的方式努力獲取知識的含義。無論是拉丁文還是英文,該單詞泛指涵蓋廣泛領(lǐng)域知識的工具書。希臘文中強調(diào)的以創(chuàng)造性手段獲取知識,在神經(jīng)科學(xué)領(lǐng)域尤其適用。神經(jīng)科學(xué)本身就是一個非常新的名詞。Francis Schmitt在本書第一版的前言中指出,本書的編寫過程就是將不同領(lǐng)域的科學(xué)家們聚集在一起,沖擊大腦研究中最頑固的難題。他推動建立了神經(jīng)科學(xué)研究項目(Neuroscience Research Program,簡稱NRP)。早期的NRP成員包括一些學(xué)術(shù)巨匠,如因關(guān)于光合作用的研究獲得諾貝爾獎的:Melvin Calvin、諾貝爾獎獲得者物理化學(xué)家Manfred. Eigen、生物化學(xué)家Albert Lehninger,和當(dāng)時正在努力破解基因編碼的年輕分子生物學(xué)家Marshall Nirenberg。Schmitt建立NRP的時候,神經(jīng)科學(xué)作為一門綜合學(xué)科還幾乎不存在。微電極的發(fā)明使神經(jīng)生理學(xué)家們得以記錄單細(xì)胞的電活動,但是幾乎不可能甄別其生物化學(xué)特性。一個重要的推進來自20世紀(jì)60年代中期涌現(xiàn)的Falck-Hillarp熒光顯微鏡技術(shù),它能夠選擇性地觀察兒茶酚胺和5一羥色胺能神經(jīng)元。這些胺類通路的研究又很快使得檢測選擇性損傷后效應(yīng)的行為學(xué)家們和生化學(xué)家們開始合作研究,使得后者的工作不再局限于在整個腦組織勻漿的水平研究神經(jīng)遞質(zhì)。20世紀(jì)70年代關(guān)于神經(jīng)遞質(zhì)受體的生化研究、它們位點的放射自顯影研究,以及神經(jīng)多肽的免疫組織化學(xué)研究,更是進一步促進了神經(jīng)生理學(xué)家、神經(jīng)解剖學(xué)家、神經(jīng)化學(xué)家和神經(jīng)藥理學(xué)家們的對話。而過去兩個世紀(jì)以來,分子生物學(xué)技術(shù)手段的應(yīng)用更加豐富了這一交流。神經(jīng)科學(xué)的爆炸性發(fā)展也體現(xiàn)在神經(jīng)科學(xué)學(xué)會(Society for Neuroscience,SFN)的歷史上。sFN于1970年(譯者注:SFN網(wǎng)站中所寫的時間為1969年)由幾百名研究人員在華盛頓特區(qū)創(chuàng)立,首任會長是Vernon Mountcastle。而當(dāng)我于1980年擔(dān)任會長時,會員人數(shù)已經(jīng)增長到。7000人。我當(dāng)時的一個主要任務(wù)是應(yīng)對關(guān)于學(xué)會存在合理性的爭論。有人認(rèn)為“我們學(xué)會的科學(xué)家人數(shù)太多了。應(yīng)當(dāng)將其一分為二,如實驗類的和理論類的”。與此相反,為了強調(diào)該領(lǐng)域的整體特點,我們推出了《神經(jīng)科學(xué)雜志》(.Journal of Neuroscience)。同時,我們認(rèn)為學(xué)會的增長可能會最終進入平臺期,精心的會議組織將可以避免會員個人“在會議的人潮中迷失”?,F(xiàn)在看來,我當(dāng)時關(guān)于平臺期的預(yù)言偏離了實際。截至2007年5月,神經(jīng)科學(xué)學(xué)會的會員人數(shù)已經(jīng)超過了38 000名,其中超過35 000人參加每年的年會,這樣的規(guī)模超過了其他任何生物醫(yī)學(xué)類的學(xué)會。
內(nèi)容概要
《神經(jīng)科學(xué)百科全書》原書篇幅巨大,為所有神經(jīng)科學(xué)百科全書之首。由來自世界各地的2400多位專家撰稿人合力打造,覆蓋了神經(jīng)科學(xué)全部主要領(lǐng)域。每個詞條在收入書中之前均經(jīng)過顧問委員會的同行評議,詞條中均含有詞匯表、引言、參考文獻和豐富的交叉參考內(nèi)容。 主編為著名神經(jīng)科學(xué)家、美國神經(jīng)科學(xué)學(xué)會前主席LarryR.Squire。內(nèi)容平易,本科生即可讀懂。深度和廣度獨一無二,足可滿足專家學(xué)者的需要。導(dǎo)讀版精選原書中的部分主題,按內(nèi)容重新編排,更適合國內(nèi)讀者購買和閱讀。
作者簡介
編者:(美國)斯奎爾(Larry R.Squire)
書籍目錄
晝夜節(jié)律 Circadian Function and Therapeutic Potential of Melatonin in Humans Circadian Gene Expression in the Suprachiasmatic Nucleus Circadian Genes and the Sleep-Wake Cycle Circadian Metabolic Rhythms Regulated by the Suprachiasmatic Nucleus Circadian Organization Circadian Organization in Non-Mammalian Vertebrates Circadian Oscillations in the Suprachiasmatic Nucleus Circadian Regulation by the Suprachiasmatic Nucleus Circadian Regulation in Invertebrates Circadian Rhythm Models Circadian Rhythms in Sleepiness, Alertness, and Performance Circadian Rhythms: Influence of Light in Humans Circadian Systems: Evolution Clock Gene Regulation of Endocrine Function Clock Genes and Metabolic Regulation Entrainment of Circadian Rhythms by Light Genetic Regulation of Circadian Rhythms in Drosophila Genetics of Circadian Disorders in Humans Mammalian Sleep and Circadian Rhythms: Flies Melatonin Regulation of Circadian Rhythmicity in Vertebrates Non-Photoreceptor Photoreception Peripheral Circadian Oscillators Photoreceptors and Circadian Clocks Psychiatric Disorders Associated with Disturbed Sleep and Circadian Rhythms. Serotonin and the Regulation of Mammalian Circadian Rhythms Shift Work and Circadian Rhythms Single Cell Neuronal Circadian Clocks Sleep and Circadian Rhythm Disorders in Human Aging and Dementia Sleep and Waking in Drosophila Sleep: Development and Circadian Control Transcription Control and the Circadian Clock季節(jié)節(jié)律 Photoperiodic Regulation of Reproductive Cycles Seasonal Changes in Night-Length and Impact on Human Sleep Seasonal Hormonal Changes and Behavior Seasonal Timing: Neural Mechanisms睡眠、做夢與清醒 Autonomic Dysregulati0n During REM Sleep Cataplexy Coma Dopamine Control of Arousal Dream Function Dreams and Dreaming: Incorporation of Waking Events Dreams and Nightmares in PTSD Dreams, Dreaming Theories and Correlates of Nightmares Endocrine Function During Sleep and Sleep Deprivation Hibernation Immune Function During Sleep and Sleep Deprivation Metabolic Syndrome and Sleep Napping Narcolepsy Nightmares Parasomnias Pharmacology of Sleep: Adenosine Reticular Activating System Sleep and Circadian Rhythm Disorders in Human Aging and Dementia Sleep and Sleep States: Gene Expression Sleep and Sleep States: Hippocampus-Neocortex Dialog Sleep and Sleep States: Histamine Role Sleep and Sleep States: Hypothalamic Regulation Sleep and Sleep States: Network Reactivation Sleep and Sleep States: PET Activation Patterns Sleep and Sleep States: Phylogeny and Ontogeny Sleep and Sleep States: Thalamic Regulation Sleep Apnea Sleep Architecture Sleep Deprivation and Brain Function sleep Deprivation: Neurobehavioral Changes Sleep in Adolescents Sleep in Aging Sleep Mentation in REM and NREM: A Neurocognitive Perspective Sleep Oscillations Sleep Oscillations and PGO Waves Sleep Research and Sleep Medicine in Historical Perspective Sleep-Dependent Memory Processing Sleeping Sickness Sleep-Wake State Regulation by Acetylcholine Sleep-Wake State Regulation by Noradrenaline and Serotonin Stimulant and Wake-Promoting Substances The AIM Model of Dreaming, Sleeping, and Waking Consciousness Thermoregulation during Sleep and Sleep Deprivation原書詞條中英對照表
章節(jié)摘錄
插圖:The alternation of light and dark is the most reliable timing cue on our planet, and therefore it is not surprising that the retina has evolved a precise timing mechanism that allows it to anticipate and then to adapt to the more than 1 million-fold change in light intensity during a 24 h period. The retina was the first extra-SCN oscillator to be discovered in mammals. Several studies have now demonstrated that many of the physiological, cellular, and molecular rhythms that are present within the retina are under the control of a circadian clock, or more likely a series of circadian clocks that are present within this tissue (Figure 1). For example, the disk shedding that occurs in the rod photoreceptors is under circadian control. Shedding persists in animals with SCN lesions or a transected optic nerve, indicating its independence from the central circadian pacemaker. Additional studies have reported that sensitivity to light-induced photoreceptor damage is modulated by the circadian clock via a cyclic adenosine monophosphate (cAMP)-dependent pathway. Other important retinal functions, such as visual sensitivity, are also under circadian control. Although results from these studies suggested that retinal physiology was regulated by a circadian clock, they were not sufficient to conclude that an independent circadian pacemaker was located within the retinal tissue. The definitive demonstration of the presence of an autonomous retinal clock in mammals was achieved a few years ago when it was shown that a circadian rhythm of melatonin release persisted in mammalian retinas maintained in culture. In light/ dark cycles, melatonin levels were high during the night and low during the day. In constant darkness, the circadian rhythm of melatonin release free-ran, exhibiting a period close to 24 h. The circadian rhythm of melatonin release in the retina can be entrained by light in vitro and is temperature compensated. Such results demonstrated that the retina can be considered a bona fide circadian pacemaker, since it satisfies the three fundamental properties (i.e., freerunning, entrainment, and temperature compensation) that describe a circadian rhythm.
編輯推薦
《神經(jīng)科學(xué)百科全書14:節(jié)律與同步(導(dǎo)讀版)》是由科學(xué)出版社出版的。
圖書封面
評論、評分、閱讀與下載