出版時間:2010-2 出版社:科學(xué)出版社 作者:張新建 頁數(shù):199
前言
核函數(shù)的概念最早來源于積分算子理論。在對各種核函數(shù)的研究中,具有正定對稱性的核函數(shù)K(t,s)逐漸引起了人們的注意。人們發(fā)現(xiàn),每個正定對稱函數(shù)K(t,s)都對應(yīng)一個由函數(shù)構(gòu)成的Hilbert空間,使得這個正定對稱函數(shù)對該空間具有再生性。反之,若一個二元函數(shù)/K(t,s)對某個空間具有再生性,則這個二元函數(shù)一定具有正定對稱性。這些聯(lián)系促使人們對具有再生性的核函數(shù)進(jìn)行專門研究。1950年,Aronszajn發(fā)表了長篇論文TheorYofreprvducingkernels,標(biāo)志著再生核理論框架的初步形成。隨后,再生核在積分方程、偏微分方程、復(fù)分析和奇異積分等方面得到重要應(yīng)用。20世紀(jì)60~80年代,再生核在樣條函數(shù)的理論與應(yīng)用研究中起著重要的作用,尤其在隨機(jī)數(shù)據(jù)的樣條平滑中扮演著核心的角色。80年代以來,隨著各種具體再生核構(gòu)造和算子方程的研究,使得再生核為一些積分和微分方程精確解的表示和數(shù)值解的計算帶來了新穎而有效的方法。與此同時,再生核空間上算子理論的研究進(jìn)入活躍時期,尤其是解析再生核空間上算子的研究涌現(xiàn)了大量論文,得到了不少深刻的結(jié)果。近年來,再生核還為小波分析、神經(jīng)網(wǎng)絡(luò)、有限元逼近、無網(wǎng)格數(shù)值方法等領(lǐng)域帶來了新的方法和研究課題。再生核雖然已經(jīng)被應(yīng)用于不少領(lǐng)域,而且其應(yīng)用潛力還在不斷被發(fā)掘,但散布在各類文獻(xiàn)中的再生核理論和方法尚缺少系統(tǒng)的整理和提煉,也缺少較全面介紹再生核基本理論的專著。作者希望本書的出版能為再生核理論和應(yīng)用的研究提供一點方便。
內(nèi)容概要
本書系統(tǒng)討論再生核理論及其在數(shù)學(xué)領(lǐng)域中的應(yīng)用,內(nèi)容包括再生核的一般性質(zhì)。半內(nèi)積空間的再生核、W2m空間的再生核、解析函數(shù)空間再生核的基本理論和構(gòu)造方法,以及再生核在樣條函數(shù)、插值與逼近、算子方程中的應(yīng)用,同時還介紹了再生核空間中的逼近和算子理論等方面的基本內(nèi)容,本書的主要特色:將W2m嚴(yán)空間的內(nèi)積和再生核理論納入半內(nèi)積空間理論的統(tǒng)一框架;用Green函數(shù)方法統(tǒng)一討論W2m嚴(yán)空間的再生核的構(gòu)造;對幾類常系數(shù)微分算子所對應(yīng)的再生核進(jìn)行了詳細(xì)討論,并探討了再生核理論中的GrPen函數(shù)方法與其他方法的聯(lián)系;介紹了再生核與樣條函數(shù)的若干聯(lián)系?! ”緯勺鳛楦叩仍盒?shù)學(xué)專業(yè)高年級大學(xué)生、研究生和教師的教材或教學(xué)參考書,也可供工科相關(guān)專業(yè)的研究生和工程技術(shù)人員參考。
書籍目錄
前言第1章 再生核空間的基本理論 1.1 再生核與再生核空間的基本性質(zhì) 1.2 再生核的存在性 1.3 再生核空間的和 1.4 再生核空間的分解 1.5 再生核空間的乘積第2章 再生核空間的一般構(gòu)造理論 2.1 有限維空間的再生核 2.2 無窮維空間的再生核 2.3 解析函數(shù)空間的再生核 2.4 Bergman空間 2.5 半內(nèi)積空間 2.6 半內(nèi)積空間的再生核 2.7 Parseval框架第3章 Green函數(shù)與再生核 3.1 線性微分算子的Green函數(shù) 3.2 由Green函數(shù)確定再生核 3.3 點賦值泛函與再生核 3.4 微分算子基本再生核第4章 幾類常系數(shù)線性微分算子與再生核 4.1 關(guān)于Vandermonde矩陣的求逆 4.2 L=Dm的情形——多項式再生核 4.3 具有互異特征值的常系數(shù)微分算子 4.4 L=Dm-1的情形第5章 W2m空間的其他再生核 5.1 W2m(a,b)空間的另一種完備內(nèi)積 5.2 m=1和m=2的情形 5.3 W2m(0,00)和W2m(只)的情形 5.4 一類微分算子確定的再生核 5.5 一類微分算子矩陣情形第6章 再生核與樣條函數(shù) 6.1 自然工插值樣條的再生核表示 6.2 用再生核討論自然L插值樣條的連續(xù)性質(zhì) 6.3 用再生核給出自然L插值樣條的遞推算法 6.4 自然L插值樣條與最小二乘估計 6.5 自然L光順樣條的再生核表示 6.6 用再生核給出自然乙光順樣條的遞推算法 6.7 自然L光順樣條與最小二乘估計第7章 再生核空間中的插值與逼近 7.1 再生核空間中的最小范數(shù)插值 7.2 再生核空間中函數(shù)的有限逼近 7.3 半內(nèi)積空間中的插值逼近 7.4 Hilbert空間中的算子樣條逼近第8章 再生核空間中的算子方程 8.1 再生核空間中線性泛函的最佳逼近 8.2 算子方程求解的一種投影格式 8.3 再生核空間中算子方程求解的一般方法 8.4 第二類ncdholm積分方程的再生核解法第9章 再生核空間上的算子 9.1 再生核空間上算子的核函數(shù) 9.2 再生核空間上的復(fù)合算子 9.3 解析再生核空間上的復(fù)合算子 9.4 再生核空間上的乘子 9.5 解析再生核空間的乘子參考文獻(xiàn)
章節(jié)摘錄
插圖:
編輯推薦
《再生核的理論與應(yīng)用》由科學(xué)出版社出版。
圖書封面
評論、評分、閱讀與下載