出版時間:2009-1 出版社:科學(xué)出版社 作者:(俄羅斯)帕爾申 等編著 頁數(shù):270
Tag標簽:無
前言
要使我國的數(shù)學(xué)事業(yè)更好地發(fā)展起來,需要數(shù)學(xué)家淡泊名利并付出更艱苦地努力。另一方面,我們也要從客觀上為數(shù)學(xué)家創(chuàng)造更有利的發(fā)展數(shù)學(xué)事業(yè)的外部環(huán)境,這主要是加強對數(shù)學(xué)事業(yè)的支持與投資力度,使數(shù)學(xué)家有較好的工作與生活條件,其中也包括改善與加強數(shù)學(xué)的出版工作。從出版方面來講,除了較好較快地出版我們自己的成果外,引進國外的先進出版物無疑也是十分重要與必不可少的。從數(shù)學(xué)來說,施普林格(springer)出版社至今仍然是世界上最具權(quán)威的出版社??茖W(xué)出版社影印一批他們出版的好的新書,使我國廣大數(shù)學(xué)家能以較低的價格購買,特別是在邊遠地區(qū)工作的數(shù)學(xué)家能普遍見到這些書,無疑是對推動我國數(shù)學(xué)的科研與教學(xué)十分有益的事。這次科學(xué)出版社購買了版權(quán),一次影印了23本施普林格出版社出版的數(shù)學(xué)書,就是一件好事,也是值得繼續(xù)做下去的事情。大體上分一下,這23本書中,包括基礎(chǔ)數(shù)學(xué)書5本,應(yīng)用數(shù)學(xué)書6本與計算數(shù)學(xué)書12本,其中有些書也具有交叉性質(zhì)。這些書都是很新的,2000年以后出版的占絕大部分,共計16本,其余的也是1990年以后出版的。這些書可以使讀者較快地了解數(shù)學(xué)某方面的前沿,例如基礎(chǔ)數(shù)學(xué)中的數(shù)論、代數(shù)與拓撲三本,都是由該領(lǐng)域大數(shù)學(xué)家編著的“數(shù)學(xué)百科全書”的分冊。對從事這方面研究的數(shù)學(xué)家了解該領(lǐng)域的前沿與全貌很有幫助。按照學(xué)科的特點,基礎(chǔ)數(shù)學(xué)類的書以“經(jīng)典”為主,應(yīng)用和計算數(shù)學(xué)類的書以“前沿”為主。這些書的作者多數(shù)是國際知名的大數(shù)學(xué)家,例如《拓撲學(xué)》一書的作者諾維科夫是俄羅斯科學(xué)院的院士,曾獲“菲爾茲獎”和“沃爾夫數(shù)學(xué)獎”。這些大數(shù)學(xué)家的著作無疑將會對我國的科研人員起到非常好的指導(dǎo)作用。當然,23本書只能涵蓋數(shù)學(xué)的一部分,所以,這項工作還應(yīng)該繼續(xù)做下去。更進一步,有些讀者面較廣的好書還應(yīng)該翻譯成中文出版,使之有更大的讀者群。總之,我對科學(xué)出版社影印施普林格出版社的部分數(shù)學(xué)著作這一舉措表示熱烈的支持,并盼望這一工作取得更大的成績。
內(nèi)容概要
The first contribution of this EMS volume on complex algebraic geometry touches upon many of the central problems in this vast and very active area of current research. While it is much too short to provide complete coverage of this subject, it provides a succinct summary of the areas it covers, while providing in-depth coverage of certain very important fields. The second part provides a brief and lucid introduction to the recent work on the interactions between the classical area of the geometry of complex algebraic curves and their Jacobian varieties,and partial differential equations of mathematical physics. The paper discusses the.work of Mumford, Novikov, Krichever, and Shiota,and would be an excellent companion to the older classics on the subject.
作者簡介
作者:(俄羅斯)帕爾申 (A.N.Parshin) (俄羅斯)I.R.Shafarevich
書籍目錄
IntroductionChapter 1. Classical Hodge Theory 1. Algebraic Varieties 2. Complex Manifolds 3. A Comparison Between Algebraic Varieties and Analytic Spaces 4. Complex Manifolds as C Manifolds 5. Connections on Holomorphic Vector Bundles 6. Hermitian Manifolds 7. Kahler Manifolds 8. Line Bundles and Divisors 9. The Kodaira Vanishing Theorem 10. MonodromyChapter 2. Periods of Integrals on Algebraic Varieties 1. Classifying Space 2. Complex Tori 3. The Period Mapping 4. Variation of Hodge Structures 5. Torelli Theorems 6. Infinitesimal Variation of Hodge StructuresChapter 3. Torelli Theorems 1. Algebraic Curves 2. The Cubic Threefold 3. K3 Surfaces and Elliptic Pencils 4. Hypersurfaces 5. Counterexamples to Torelli TheoremsChapter 4. Mixed Hodge Structures 1. Definition of mixed Hodge structures 2. Mixed Hodge structure on the Cohomology of a Complete Variety with Normal Crossings 3. Cohomology of Smooth Varieties 4. The Invariant Subspace Theorem 5. Hodge Structure on the Cohomology of Smooth Hypersurfaces 6. Further Development of the Theory of Mixed Hodge StructuresChapter 5. Degenerations of Algebraic Varieties 1. Degenerations of Manifolds 2. The Limit Hodge Structure 3. The Clemens-Schmid Exact Sequence 4. An Application of the Clemens-Schmid Exact Sequence to the Degeneration of Curves 5. An Application of the Clemens-Schmid Exact Sequence to Surface Degenerations. The Relationship Between the Numerical Invariants of the Fibers Xt and X0 6. The Epimorphicity of the Period Mapping for K3 SurfacesComments on the bibliographyReferencesIndex
章節(jié)摘錄
插圖:
編輯推薦
《國外數(shù)學(xué)名著系列(續(xù)1)(影印版)44:代數(shù)幾何3(復(fù)代數(shù)簇,代數(shù)曲線及雅可比行列式)》由科學(xué)出版社出版。
圖書封面
圖書標簽Tags
無
評論、評分、閱讀與下載