出版時間:2008-6 出版社:科學出版社 作者:王仁宏,李崇君,朱春剛 頁數(shù):371
Tag標簽:無
內容概要
本書系統(tǒng)介紹計算幾何的理論與方法.內容包括計算幾何的數(shù)學基礎、曲線曲面的基本理論、Bezier曲線曲面、B樣條曲線曲面、有理Bezier曲線曲面與NURBS方法、細分方法以及徑向基函數(shù)等。 本書可作為高等院校信息與計算科學專業(yè)的本科生教材,也可作為計算數(shù)學學科碩土生、博士生相關課程的教材或參考書。本書還可供從事計算機輔助幾何設計、計算機圖形學、圖像處理及相關領域的科學技術工作者參考。
書籍目錄
第1章 計算幾何的數(shù)學基礎.1.1 Weierstrass定理1.2 一致逼近1.2.1 Borel存在定理1.2.2 最佳逼近定理1.2.3 Tchebysherv多項式及其應用1.3 平方逼近1.3.1 最小二乘法1.3.2 空間L2ρ(χ)1.3.3 正交函數(shù)系與廣義Fourier級數(shù)1.4 多項式插值法1.4.1 Lagrange插值公式1.4.2 Newton插值公式1.4.3 插值余項1.4.4 Hermite插值公式1.4.5 多元多項式插值簡介1.5 一元樣條1.5.1 3次樣條函數(shù)插值1.5.2 樣條函數(shù)及其性質1.6 多元樣條簡介1.6.1 多元樣條空間的基本定理1.6.2 多元樣條空間的維數(shù)1.6.3 多元B樣條與擬插值算子習題1第2章 曲線曲面的基本理論2.1 向量及向量函數(shù)2.2 曲線曲面的表示方法2.2.1 曲線面的參數(shù)表示2.2.2 曲線曲面的代數(shù)表示……第3章 Bezier曲線曲面第4章 B樣條曲線曲面第5章 有理Bezier曲線曲面與NURBS方法第6章 細分方法第7章 徑向基函數(shù)參考文獻
章節(jié)摘錄
第1章 計算幾何的數(shù)學基礎 計算幾何,計算機圖形學,計算機輔助幾何設計間雖有一些共同點和聯(lián)系,但計算幾何偏向于從幾何學的角度來研究相關的幾何問題。計算幾何是一門新興的幾何學,它是與微分幾何,代數(shù)幾何,計算數(shù)學,逼近論以及計算機科學相互交叉的一門科學。
圖書封面
圖書標簽Tags
無
評論、評分、閱讀與下載