出版時間:2008-1 出版社:科學(xué) 作者:西北工業(yè)大學(xué)高等代數(shù)編寫組 編 頁數(shù):348
Tag標(biāo)簽:無
內(nèi)容概要
“高等代數(shù)”是高等院校數(shù)學(xué)類各專業(yè)本科生的一門重要數(shù)學(xué)基礎(chǔ)課.在高等教育已由精英化轉(zhuǎn)為大眾化教育的形勢下,編寫一本內(nèi)容豐富、結(jié)構(gòu)合理、易教易學(xué)、注重應(yīng)用的高等代數(shù)教材是非常必要的。 本書共分14章,幾乎包含了高等代數(shù)的全部內(nèi)容,研究對象從比較具體的行列式、矩陣、向量、線性方程組、多項式、相似變換、二次型、λ-矩陣到比較抽象的線性空間、線性變換、歐氏空間、酉空間、雙線性函數(shù),進而介紹近世代數(shù)的有關(guān)內(nèi)容.這一過程符合代數(shù)學(xué)的發(fā)展,也符合人類認識事物的規(guī)律,即從具體到抽象再到具體(思維中的具體)的過程。為了分散難點、易教易學(xué),書中對各章內(nèi)容的許多細節(jié)處理頗具特色,并引入許多實例介紹了高等代數(shù)的應(yīng)用。各章后均配有適量的習(xí)題,書后附有參考答案。講完全書約需128學(xué)時。 本書便于教學(xué)與自學(xué),可作為高等院校數(shù)學(xué)類各專業(yè)相關(guān)課程使用的教材,也可供工程技術(shù)人員和高校教師參考。
書籍目錄
第1章 行列式 1.1 數(shù)域 1.2 二、三階行列式 1.3 n階行列式的定義 1.4 行列式的性質(zhì) 1.5 行列式展開定理 1.5.1 按一行(列)展開公式 1.5.2 Laplace定理 1.6 Cramer法則 1.6.1 線性方程組的概念 1.6.2 Cramer法則 習(xí)題1第2章 矩陣及其運算 2.1 矩陣的概念 2.2 矩陣的基本運算 2.2.1 矩陣的線性運算 2.2.2 矩陣乘法 2.2.3 方陣的冪 2.2.4 矩陣的轉(zhuǎn)置 2.2.5 方陣的行列式 2.2.6 共軛矩陣 2.3 逆矩陣 2.4 分塊矩陣 習(xí)題2第3章 矩陣的初等變換 3.1 矩陣的秩 3.2 矩陣的初等變換 3.3 求解線性方程組的消元法 3.4 初等矩陣 3.5 分塊初等矩陣及其應(yīng)用 習(xí)題3第4章 向量組的線性相關(guān)性 4.1 向量及其運算 4.2 向量組的線性相關(guān)性 4.2.1 線性相關(guān)與線性無關(guān) 4.2.2 線性相關(guān)性的判別定理 4.3 向量組的秩與極大無關(guān)組 4.3.1 秩與極大無關(guān)組 4.3.2 等價向量組 4.4 向量空間 4.4.1 向量空間的概念 4.4.2 正交基 4.5 線性方程組解的結(jié)構(gòu) 4.5.1 齊次線性方程組 4.5.2 非齊次線性方程組 4.5.3 空間三個平面的位置 習(xí)題4第5章 多項式 5.1 一元多項式及其運算 5.1.1 一元多項式的概念 5.1.2 多項式的運算 5.2 整除的概念 5.2.1 帶余除法 5.2.2 整除的概念 5.3 最大公因式 5.4 因式分解定理 5.5 重因式 5.6 多項式函數(shù) 5.7 復(fù)系數(shù)與實系數(shù)多項式的因式分解 5.7.1 復(fù)系數(shù)多項式的因式分解 5.7.2 實系數(shù)多項式的因式分解 5.8 有理系數(shù)多項式 5.8.1 本原多項式 5.8.2 整系數(shù)多項式的有理根 5.8.3 有理系數(shù)多項式的因式分解 ……第6章 矩陣的相似變換第7章 二次型第8章 λ-矩陣第9章 線性空間第10章 線性映射第11章 歐氏空間第12章 酉空間第13章 雙線性函數(shù)第14章 基本代數(shù)結(jié)構(gòu)簡介習(xí)題答案與提示
編輯推薦
《21世紀(jì)高等院校教材·高等代數(shù)》便于教學(xué)與自學(xué),可作為高等院校數(shù)學(xué)類各專業(yè)相關(guān)課程使用的教材,也可供工程技術(shù)人員和高校教師參考。
圖書封面
圖書標(biāo)簽Tags
無
評論、評分、閱讀與下載