出版時間:2007-1 出版社:科學(xué) 作者:比爾吉斯?fàn)?nbsp; 頁數(shù):618 字?jǐn)?shù):760000
Tag標(biāo)簽:無
內(nèi)容概要
從出版方面來講,除了較好較快地出版我們自己的成果外,引進(jìn)國外的先進(jìn)出版物無疑也是十分重要與必不可少的。從數(shù)學(xué)來說,施普林格(Springer)出版社至今仍然是世界上最具權(quán)威的出版社??茖W(xué)出版社影印一批他們出版的好的新書,使我國廣大數(shù)學(xué)家能以較低的價格購買,特別是在邊遠(yuǎn)地區(qū)工作的數(shù)學(xué)家能普遍見到這些書,無疑是對推動我國數(shù)學(xué)的科研與教學(xué)十分有益的事。 這次科學(xué)出版社購買了版權(quán),一次影印了23本施普林格出版社出版的數(shù)學(xué)書,就是一件好事,也是值得繼續(xù)做下去的事情。大體上分一下,這28本書中,包括基礎(chǔ)數(shù)學(xué)書5本,應(yīng)用數(shù)學(xué)書6本與計算數(shù)學(xué)書12本,其中有些書也具有交叉性質(zhì)。這些書都是很新的,2000年以后出版的占絕大部分,共計16本,其余的也是1990年以后出版的。這些書可以使讀者較快地了解數(shù)學(xué)某方面的前沿,例如基礎(chǔ)數(shù)學(xué)中的數(shù)論、代數(shù)與拓?fù)淙?,都是由該領(lǐng)域大數(shù)學(xué)家編著的“數(shù)學(xué)百科全書”的分冊。對從事這方面研究的數(shù)學(xué)家了解該領(lǐng)域的前沿與全貌很有幫助。按照學(xué)科的特點(diǎn),基礎(chǔ)數(shù)學(xué)類的書以“經(jīng)典”為主,應(yīng)用和計算數(shù)學(xué)類的書“前沿”為主。這些書的作者多數(shù)是國際知名的大數(shù)學(xué)家,例如《拓?fù)鋵W(xué)》一書的作者諾維科夫是俄羅斯科學(xué)院的院士,曾獲“菲爾茲獎”和“沃爾夫數(shù)學(xué)獎”。這些大數(shù)學(xué)家的著作無疑將會對我國的科研人員起到非常好的指導(dǎo)作用。 當(dāng)然,23本書只能涵蓋數(shù)學(xué)的一部分,所以,這項(xiàng)工作還應(yīng)該繼續(xù)做下去。更進(jìn)一步,有些讀者面較廣的好書還應(yīng)該翻譯成中文出版,使之有更大的讀者群。
作者簡介
作者:(瑞士)Peter Burgisser (瑞士)Michael Clausen (瑞士)M.Amin Shokrollahi
書籍目錄
Chapter 1.Introduction 1.1 Exercises 1.2 Open Problems 1.3 NotesPartⅠ.Fundamental Algorithms Chapter 2. Efficient Polynomial Arithmetic 2.1 Multiplication of Polynomials I 2.2* Multiplication of Polynomials II 2.3* Multiplication of Several Polynomials 2.4 Multiplication and Inversion of Power Series 2.5* Composition of Power Series 2.6 Exercises 2.7 Open Problems 2.8 Notes Chapter 3. Efficient Algorithms with Branching 3.1 Polynomial Greatest Common Divisors 3.2* Local Analysis of the Knuth-Schonhage Algorithm 3.3 Evaluation and Interpolation 3.4* Fast Point Location in Arrangements of Hyperplanes 3.5* Vapnik-Chervonenkis Dimension and Epsilon-Nets 3.6 Exercises 3.7 Open Problems 3.8 NotesPartⅡ.Elementary Lower Bounds Chapter 4. Models of Computation 4.1 Straight-Line Programs and Complexity 4.2 Computation Sequences 4.3* Autarky 4.4* Computation Trees 4.5* Computation Trees and Straight-line Programs 4.6 Exercises 4.7 Notes Chapter 5. Preconditioning and Transcendence Degree 5.1 Preconditioning 5.2 Transcendence Degree 5.3* Extension to Linearly Disjoint Fields 5.4 Exercises 5.5 Open Problems 5.6 Notes Chapter 6. The Substitution Method 6.1 Discussion of Ideas 6.2 Lower Bounds by the Degree of Linearization 6.3* Continued Fractions, Quotients, and Composition 6.4 Exercises 6.5 Open Problems 6.6 Notes Chapter 7. Differential Methods 7.1 Complexity of Truncated Taylor Series 7.2 Complexity of Partial Derivatives 7.3 Exercises 7.4 Open Problems 7.5 NotesPart Ⅲ.High Degree Chapter 8. The Degree Bound 8.1 A Field Theoretic Version of the Degree Bound 8.2 Geometric Degree and a Bezout Inequality 8.3 The Degree Bound 8.4 Applications 8.5* Estimates for the Degree 8.6* The Case of a Finite Field 8.7 Exercises 8.8 Open Problems 8.9 Notes Chapter 9. Specific Polynomials which Are Hard to Compute 9.1 A Genetic Computation 9.2 Polynomials with Algebraic Coefficients 9.3 Applications 9.4* Polynomials with Rapidly Growing Integer Coefficients 9.5* Extension to other Complexity Measures 9.6 Exercises 9.7 Open Problems 9.8 Notes Chapter 10. Branching and Degree 10.1 Computation Trees and the Degree Bound 10.2 Complexity of the Euclidean Representation 10.3* Degree Pattern of the Euclidean Representation 10.4 Exercises 10.5 Open Problems 10.6 Notes Chapter 11. Branching and Connectivity 11.1 Estimation of the Number of Connected Component 11.2 Lower Bounds by the Number of Connected Components 11.3 Knapsack and Applications to Computational Geometry 11.4 Exercises 11.5 Open Problems 11.6 Notes Chapter 12. Additive Complexity 12.1 Introduction 12.2* Real Roots of Sparse Systems of Equations 12.3 A Bound on the Additive Complexity 12.4 Exercises 12.5 Open Problems 12.6 NotesPart Ⅳ.Low Degree Chapter 13. Linear Complexity 13.1 The Linear Computational Model 13.2 First Upper and Lower Bounds 13.3* A Graph Theoretical Approach 13.4* Lower Bounds via Graph Theoretical Methods 13.5* Generalized Fourier Transforms 13.6 Exercises 13.7 Open Problems 13.8 Notes Chapter 14. Multiplicative and Bilinear Complexity 14.1 Multiplicative Complexity of Quadratic Maps 14.2 The Tensorial Notation 14.3 Restriction and Conciseness 14.4 Other Characterizations of Rank 14.5 Rank of the Polynomial Multiplication 14.6 The Semiring T 14.7 Exercises 14.8 Open Problems 14.9 Notes Chapter 15. Asymptotic Complexity of Matrix Multiplication Chapter 16. Problems Related to Matrix Multiplication Chapter 17. Lower Bounds for the Complexity of Algebras Chapter 18. Rank over Finite Fields and Codes Chapter 19. Rank of 2-Slice and 3-Slice Tensors Chapter 20. Typical Tensorial RankPart Ⅴ.Complete Problems Chapter 21. P Versus NP:A Nonuniform Algebraic AnalogueBibliographyList of NotationIndex
圖書封面
圖書標(biāo)簽Tags
無
評論、評分、閱讀與下載