數(shù)學(xué)小叢書(共18冊)

出版時間:2002-5  出版社:科學(xué)出版社  作者:華羅庚等  頁數(shù):1508  
Tag標簽:無  

內(nèi)容概要

  《數(shù)學(xué)小叢書》(套裝共18冊)包括:從楊輝三角談起;對稱;從祖沖之的圓周率談起;力學(xué)在幾何中的一些應(yīng)用;平均;格點和面積;一筆畫和郵遞路線問題;從劉徽割圓談起等內(nèi)容。

書籍目錄

1冊1 楊輝三角的基本性質(zhì)2 二項式定理3 開方4 高階等差級數(shù)5 差分多項式6 逐差法7 堆垛術(shù)8 混合級數(shù)9 無窮級數(shù)的概念10 無窮混合級數(shù)11 循環(huán)級數(shù)12 循環(huán)級數(shù)的一個例子-斐波那契級數(shù)13 倒數(shù)級數(shù)14 級數(shù)∑(1/(N*N))(N->1-∞)的漸進值2冊1 代數(shù)對稱-對稱多項式和推廣(1)一元二次方程的根的對稱多項式(2)一元N次方程的根的對稱多項式2 幾何對稱(1)平面上的對稱(2)空間中的對稱(3)正多邊形的對稱(4)正多面體的對稱(5)帶飾、面飾和晶體3 群的概念3冊1 祖沖之的約率22/7和密率355/1132 人造衛(wèi)星將于2113年又接近地球3 輾轉(zhuǎn)相除法和連分數(shù)4 答第2節(jié)的問5 約率和密率的內(nèi)在意義6 為什么四年一閏,而百年又少一閏?7 農(nóng)歷的月大小、閏年閏月8 火星大沖9 日月食10 日月合壁,五星連珠,七曜同宮11 計算方法12 有理數(shù)逼近實數(shù)13 漸進分數(shù)14 實數(shù)作為有理數(shù)的極限15 最佳逼近16 結(jié)束語附錄 祖沖之簡介4冊1 重心概念的應(yīng)用2 力系平衡概念的應(yīng)用5冊1 引言2 H>=G

編輯推薦

1冊  楊輝是我國宋朝時候的數(shù)學(xué)家。在他著的《詳解九章算法》一書中,畫了一張表示二項式展開后的系數(shù)構(gòu)成的三角圖形,稱做"開方做法本源",現(xiàn)在簡稱為"楊輝三角"?!稊?shù)學(xué)小叢書》(套裝共18冊)從分析楊輝三角三角的基本性質(zhì)談起,討論二項式定理、開方和多種級數(shù),最后以精確估計一個無窮級數(shù)的和的值為例,告訴讀者近似計算的一種方法。2冊  對稱,照字面來說,就是兩個東西相對又相稱,因此把這兩個東西對換以下,就好象沒動過一樣?!稊?shù)學(xué)小叢書》(套裝共18冊)主要介紹對稱的數(shù)學(xué),先講代數(shù)對稱,再講幾何對稱,最后引出了"群"的概念。"群"的概念在近代數(shù)學(xué)中是重要的概念之一,它不只對于代數(shù)和幾何學(xué),也對于數(shù)學(xué)分析以至于理論物理學(xué)都有重大的應(yīng)用。通過這些內(nèi)容,作者還企圖幫助對折了解:數(shù)學(xué)理論是由具體實際中抽象出來的,而又有具體實際的應(yīng)用。 3冊  我國古代偉大數(shù)學(xué)家祖沖之提出的計算圓周率的約率和密率,孕育著用有理數(shù)最佳逼近實數(shù)的問題。"逼近"這個概念在近代數(shù)學(xué)中是十分重要的?!稊?shù)學(xué)小叢書》(套裝共18冊)從回答為什么前蘇聯(lián)發(fā)射的人造衛(wèi)星將于2113年又接近地球,以及天文上的一些有趣的現(xiàn)象說器,在最大公約數(shù)、輾轉(zhuǎn)相除法、連分數(shù)等中學(xué)生已有的數(shù)學(xué)知識的基礎(chǔ)上,導(dǎo)出了用有理數(shù)最佳逼近實數(shù)的原理的方法。凡是幾種周期的重遇或復(fù),都可能用到這一套數(shù)學(xué),而多種周期現(xiàn)象經(jīng)常出現(xiàn)于聲波、光波、電波、水波和空氣波等的研究中。  數(shù)學(xué)在力學(xué)上的應(yīng)用是明顯的。比如力學(xué)上的一些計算就是用到數(shù)學(xué)。但是力學(xué)對于數(shù)學(xué),比如在幾何中的應(yīng)用,大家就不一定知道得很多了。其實遠在2000年前的阿基米德,就已經(jīng)應(yīng)用力學(xué)上的物體平衡定律等來證明一些集合命題了。學(xué)過物理的中學(xué)生,都熟悉物體的重心和力的平衡這些力學(xué)概念;《數(shù)學(xué)小叢書》(套裝共18冊)引用了這些力學(xué)概念,來舉例說明他們?nèi)绾斡脕碜C明一些幾何命題,內(nèi)容只涉及中學(xué)課程里的一些物理和幾何的知識,不涉及深奧的理論。5冊  《數(shù)學(xué)小叢書》(套裝共18冊)環(huán)繞"平均"這個概念講述一些有趣的數(shù)學(xué)問題。先從算術(shù)平均、幾何平均、調(diào)和平均三者的關(guān)系講到它的有趣的應(yīng)用:解答諸如食品罐頭采用什么樣的形狀最省料、電燈掛在多高照到桌上最亮等實際問題,以及證明了數(shù)學(xué)上某些有用的不等式。然后進一步推廣平均的概念,引進了"冪平均",把算術(shù)平均、幾何平均、調(diào)和平均三者統(tǒng)一起來,并且介紹了有關(guān)冪平均的一些性質(zhì)。最后還講了"加權(quán)平均",這又是在實際生活中經(jīng)常遇到了一種平均值,而這種平均還可以和力學(xué)上的重心問題聯(lián)系起來。書種附有不少習(xí)慣,通過這些習(xí)題,讀者可進一步體會書中所講理論的用處。6冊  一張方格紙,上面畫著縱橫兩組平行線,想林平行線之間的距離都相等,這樣兩組平行線的交點,就是所謂格點。在平面上有一個有限的區(qū)域內(nèi),格點的個數(shù)總是一個整數(shù)。怎樣用格點的個數(shù)去計算平面上有限區(qū)域的面積,或者,反過來,在平面上已知面積的一個有限區(qū)域內(nèi)至少有多少格點,這就是著本小冊子所要討論的問題。這里面特別討論了一條叫做"數(shù)的幾何中的基本定理"。為了證明著條定理,書中還介紹了一條叫做"重疊原則"的定理。聯(lián)系重疊原則,又討論了怎樣用有理數(shù)逼近無理數(shù)等問題。這本小冊則就是這樣圍繞著格點和面積這個主題講了數(shù)學(xué)上一些有用的問題。7冊  一筆畫是一個有趣的幾何問題。在世界歷史上,從文藝復(fù)興時代起,人們就開始注意到一些超出歐幾里得幾何學(xué)范圍的幾何現(xiàn)象和問題,一筆畫就是其中之一。它是現(xiàn)今稱為"網(wǎng)絡(luò)論"的幾何學(xué)科的始祖。幾世紀來,人們一直把它看做是數(shù)學(xué)游戲,然而在我國20世紀50年代,郵遞路線問題已得到了實際的應(yīng)用?! ∵@本小冊則的講法,論斷力求明確,推理力求嚴密,希望能幫助讀者熟悉一些數(shù)學(xué)上常見的思路,學(xué)習(xí)分析和論證的方法。附少量習(xí)題,提供練習(xí)的機會?! 蟾接幸黄獨v史文獻-歐拉在1735年的報告,從中可以看到這位數(shù)學(xué)家在研究一筆畫問題時思想逐漸深入的過程。8冊  我國古代數(shù)學(xué)家劉徽,從圓內(nèi)接正六邊形起算,令邊數(shù)一倍一倍地增加,逐個算出六邊形、十二邊形、二十四邊形……的面積,去逐步地逼近圓周率。這個方法就叫劉徽割圓術(shù)。劉徽這種方法的特點就是用有限來逼近無窮,這種思想一直到近代數(shù)學(xué)中還起著極其重要的作用,而且今后將繼續(xù)起著重要的作用。著本小冊子就是應(yīng)用劉徽哥圓術(shù)的這一思想,來處理一些面積和體積問題,并且引出了面積原理,求出某些級數(shù)的和和極限。9冊  這本小冊子是為中學(xué)生寫的,開頭先從一些實際事例說明極大極小問題的性質(zhì);接下去就在中學(xué)數(shù)學(xué)的基礎(chǔ)之上,從二次函數(shù)的極大極小講起,講了不涉及高等數(shù)學(xué)的幾種類型的極值問題,并且適當(dāng)?shù)亓信e了一些聯(lián)系實際的、有趣的例子;最后,把所江的這些類型同意在一個一般的定理之下。書末附有一些習(xí)題,通過這些習(xí)題,對折可以更好地了解和運用所講的理論。書中某些定理的證明,雖然不引用高等數(shù)學(xué),但是方法上有點近似高等數(shù)學(xué),當(dāng)然不超出中學(xué)程度的讀者多能理解的范圍。這可能是讀者的邏輯思維能力提高一步,而為學(xué)習(xí)高等數(shù)學(xué)做一引導(dǎo)。10冊  《孫子算經(jīng)》是我國古代的一部優(yōu)秀數(shù)學(xué)著作,其中有"物不知其數(shù)"一問。這類問題在古代有不少有趣的名稱,"神奇妙算"也是其中之一。  這類問題和解法,中外數(shù)學(xué)家都稱它為孫子定理,或中國余數(shù)定理。這一工作不進在數(shù)學(xué)歷史上占有地位,而且這類問題的解法的原則在現(xiàn)代數(shù)學(xué)中還在起著重要的作用,例如雜電子計算機的設(shè)計終究有應(yīng)用。書中深入淺出地介紹"神奇妙算"這類問題和解法講起,抽出最基本的原則和方法,通俗而深刻地導(dǎo)出了插入理論、同余式理論等數(shù)學(xué)的重要分之,使得中學(xué)生也易于接受這些知識。同時,本小冊則提供了思考問題的方法,對學(xué)習(xí)數(shù)學(xué)和思考問題都有啟發(fā)性。11冊  等周問題的典型例子之一是"周長相等的所有封閉平面曲線中,怎樣的曲線所圍成的面積最大?"這本小冊子主要是介紹它的初等解法及一系列有趣的應(yīng)用。念過平面幾何及三角的讀者完全能看懂它?! ”緝韵葟暮唵蔚娜切握勂?,接著論述:四邊長度給頂?shù)囊磺兴倪呅沃?,?nèi)接于圓的四邊形具有最大的面積;周界長度給頂?shù)乃蠳邊形中,正N邊形具有最大的面積。進而給出了上述等周問題解答的兩個證明和海輪公式的推廣。最后證明了一切體積相同的立體中,球體具有最小的表面積。12冊  《數(shù)學(xué)小叢書》(套裝共18冊)第一章里凸多面形的歐拉定理的證明,只需要中學(xué)立體幾何知識。在第二長里,通過這定理和證明的分析討論,以及橡皮薄膜作成的圖形的邊形,引進拓撲變換的直觀描寫,從而得到定理1的推廣,閉多面形的歐拉定理。在最后一章里,定理3和定理4圓滿地解決由定理1所提出的一些問題,同時也給出詞曲面的拓撲分類。13冊  這本小冊子通過許多的例子,說明了復(fù)數(shù)在平面上的幾何學(xué)中的一些方便的、有趣的應(yīng)用。第1節(jié)簡單復(fù)習(xí)關(guān)于復(fù)數(shù)的基本知識。第2節(jié)列舉了復(fù)數(shù)應(yīng)用于幾何學(xué)的一些一般性例子。以下3,4,5,6節(jié)分別說明復(fù)數(shù)在共線、共圓、共點,圓族,復(fù)數(shù)的分式先行變換,等速圓周運動等方面的應(yīng)用。在說明這些應(yīng)用的同時,介紹了一些數(shù)學(xué)上常用的思考方法。小冊子中還附有習(xí)題和習(xí)題解答或提示,為讀者提供練習(xí)的機會。1  單位分數(shù)是分子為1、分母為自然數(shù)的分數(shù)。用單位分數(shù)表示分數(shù),具有許多有趣的性質(zhì),由此產(chǎn)生一些有趣的問題,其中有的是至今未解決的數(shù)論問題和猜想。《數(shù)學(xué)小叢書》(套裝共18冊)從有關(guān)單位分數(shù)的一個古老的問題談起,討論了單位分數(shù)的一些重要的性質(zhì)和應(yīng)用,最后介紹了一種有趣的無窮級數(shù)及其求和的方法。15冊  《數(shù)學(xué)小叢書》(套裝共18冊)首先對數(shù)學(xué)歸納法的原理做了深入淺出的分析,然后通過對數(shù)學(xué)歸納法的一些"變著"的討論以及數(shù)學(xué)歸納法在遞歸函數(shù)、排列和組合、代數(shù)恒等式、差分、不等式和幾何方面的一些應(yīng)用,啟發(fā)讀者逐步體會發(fā)現(xiàn)問題、解決問題的一些思想、方法和技巧。在此基礎(chǔ)上,《數(shù)學(xué)小叢書》(套裝共18冊)在最后一節(jié)很自然地介紹了數(shù)學(xué)歸納法的數(shù)學(xué)依據(jù)-佩亞諾公理?!  稊?shù)學(xué)小叢書》(套裝共18冊)內(nèi)容豐富,討論直觀生動,由淺入深,經(jīng)過競選的例子不局限于解題技巧,還給人以足夠的思考空間,對于善于思考的讀者所得到的收獲將不囿于《數(shù)學(xué)小叢書》(套裝共18冊)。16冊  《數(shù)學(xué)小叢書》(套裝共18冊)通過介紹蜂房結(jié)構(gòu)引出數(shù)學(xué)問題,進而從不同的角度、方法及工具,深入淺出地討論各類不同的極值問題,自然地得到一些重要而且經(jīng)典的結(jié)果。通過這些討論,非常自然地因如了拼砌填充、格論、群論、不等式論與變分法等近、現(xiàn)代數(shù)學(xué)的思想與方法。書中著重介紹了如何提煉數(shù)學(xué)模型,如何解決問題,以及解決問題后如何做更深層次的思考進而提出和解決更一般、更廣泛的問題?!稊?shù)學(xué)小叢書》(套裝共18冊)內(nèi)容豐富,生動有趣。盡管《數(shù)學(xué)小叢書》(套裝共18冊)的初衷是為中學(xué)生寫的課外讀物,但不同層次的讀者都能從中得到很多收獲,特別地,書中信手拈來的許多精辟見解對數(shù)學(xué)工作者也極富啟發(fā)。17冊  公元400多年,祖沖之公布了一條震驚世界的不等式3.1415926

圖書封面

圖書標簽Tags

評論、評分、閱讀與下載


    數(shù)學(xué)小叢書(共18冊) PDF格式下載


用戶評論 (總計26條)

 
 

  •   四十多年前上初三的時候,老師向我們幾個愛好數(shù)學(xué)的同學(xué)推薦了《從楊輝三角談起》,一頭鉆進去,果然著了迷。于是一發(fā)不可收拾,這套“數(shù)學(xué)小叢書”陪伴我進入高中(當(dāng)時買這套書可不易,我最終也沒購齊——不是因為書價,那時一本才幾分錢,最貴的一角多)??上幕锩鼣嗨土宋业臄?shù)學(xué)夢想,命運陰差陽錯將我推向新聞之路,打了幾乎一輩子的交道。但當(dāng)年經(jīng)“數(shù)學(xué)小叢書”淘煉的縝密思維和推理能力卻如影隨形,大大地提高了我的寫作能力,令同報社的文科出身寫手望塵莫及(并非吹牛,最后是我審改他們的文章而不是他們審改我的文章就是明證)。所以向中學(xué)生強烈推薦這套“大家小書”,無論你將來以何為業(yè),它都會讓你受益終生。因為它的重點不在傳授給你怎樣應(yīng)考,而是訓(xùn)練你的基本思維能力。
  •   上一次我買的時候才67.3元,現(xiàn)在都漲到了80.4元,整整讀了13.1元錢.這樣也對消費者也太不公平了吧。希望卓越好好考慮廣大讀者的意見,不要隨意加價。加價希望也給讀者一個理由。謝謝, 一個讀書的人的建議
  •   讀高中的時候看過幾本,非常棒!在書店里看到過新的類似的書,不過已經(jīng)成了考試用書了,無非是奧賽的書,不喜歡那樣的東西,還是這些大家寫出來的比較輕松的文字讀起來爽一下,推薦給喜歡數(shù)學(xué)的讀高中的孩子們,不一定為了考試,開卷有益。
  •   之所以選購這套書,是因為看著兒子整天忙著學(xué)垃圾奧數(shù)而心痛。2年級的孩子,對很多數(shù)學(xué)問題還沒有感性認識,就教他們“記公式”,比如很好玩的斐波那契數(shù)列,到了奧數(shù)里就是一個“按規(guī)律填數(shù)”的類型題,真惡心!真怕兒子對數(shù)據(jù)的喜愛被可惡的奧數(shù)訓(xùn)練消磨掉。所以買來這套書,開拓自己的思路,然后慢慢幫助兒子了解更多的數(shù)學(xué)真諦。 已經(jīng)看了幾本,每一本都不是很容易,但都讓人有收獲,有驚喜。然后再轉(zhuǎn)換成兒子能夠理解的語言講給他聽,兒子也非常喜歡! 這套書的另一個特點是風(fēng)格樸實,語言簡練,與時下那些二、三百頁還不盡興的“科普”讀物大不相同。哈,也許是我老了,沒時間看那些口水話了吧。
  •   無數(shù)個老師曾經(jīng)推薦過這套書,幸好被我買到一套!
  •   如題。全都是國內(nèi)最優(yōu)秀的數(shù)學(xué)家之作,而非僅數(shù)學(xué)科普作者之作,因此富有意義。
  •   數(shù)學(xué)小叢書可以給數(shù)學(xué)初學(xué)者以啟迪,可能對一個人的一生產(chǎn)生一定的影響.卓越雅馬遜的出色服務(wù),給讀者帶來的影響更大.
  •   這套小叢內(nèi)容很豐富,好!
  •   作為孩子數(shù)學(xué)的啟蒙用的,覺得還行
  •   現(xiàn)在在研究,還可以,有重復(fù)的
  •   出自大師之手,很好,很強大
  •   非常好,想買很久好了,看見降價就馬上入手
  •   叢書不少,內(nèi)容跨距很大,估計能用到大學(xué)
  •   放下數(shù)學(xué)課本已經(jīng)將近30年了,看到這套小叢書還是毫不猶豫買了下來,除了其中的《從孫子的神奇妙算談起》在初中時看過之外,其他都未曾見讀過。快速翻了一下,有些方法比之當(dāng)初讀書時更為簡捷,有些思路給人以豁然開朗之感。而且每冊都不太厚,但基本完整介紹一個專題。非常喜歡?。?!
  •   60年代我買過一套送給了高考的外甥,70年代收集了幾冊給自己的孩子,這回是給孫輩了。這是經(jīng)典。
  •   都是大家寫的,這套書太經(jīng)典了。
  •   淺顯易懂,適合高中生閱讀。
  •   這個書很早就出了。對于中學(xué)生,讀起來有一定的難點。但是可以很好的開拓思路。我當(dāng)年學(xué)習(xí)數(shù)學(xué)的時候,書很少,因此見到一本書,就認真讀?,F(xiàn)在也沒有出比這套書更時候中學(xué)生讀的。特別是這套書都是由大家,名家寫的。
  •   函套包裝,袖珍書!適合成人及中學(xué)生閱讀的趣味數(shù)學(xué)普及讀物。數(shù)學(xué)小從書(18冊)原書硬質(zhì)紙殼函套包裝,發(fā)貨運輸只用塑料袋包裝,結(jié)果壓扁,破損原書硬殼,很是氣憤,亞馬遜工作不能只圖快?。?/li>
  •   高中學(xué)生不錯的讀物
  •   形式化的正確地位
  •   名家所寫,適合高中的孩子
  •   我的大愛,數(shù)學(xué)愛好者的收藏
  •   對教學(xué)和提升教師有幫助
  •   多多小虎
  •   想從小培養(yǎng)孩子的數(shù)學(xué)興趣
 

250萬本中文圖書簡介、評論、評分,PDF格式免費下載。 第一圖書網(wǎng) 手機版

京ICP備13047387號-7